
Asynchronous Authentication
Marwa Mouallem

marwamouallem@cs.technion.ac.il

Technion

Haifa, Israel

Ittay Eyal

ittay@technion.ac.il

Technion

Haifa, Israel

ABSTRACT
A myriad of authentication mechanisms embody a continuous evo-

lution from verbal passwords in ancient times to contemporary

multi-factor authentication: Cryptocurrency wallets advanced from

a single signing key to using a handful of well-kept credentials, and

for online services, the infamous “security questions” were all but

abandoned. Nevertheless, digital asset heists and numerous identity

theft cases illustrate the urgent need to revisit the fundamentals of

user authentication.

We abstract away credential details and formalize the general,

common case of asynchronous authentication, with unbounded mes-

sage propagation time. Given credentials’ fault probabilities (e.g.,

loss or leak), we seek mechanisms with maximal success probability.

Such analysis was not possible before due to the large number of

possible mechanisms. We show that every mechanism is dominated

by some Boolean mechanism—defined by a monotonic Boolean func-

tion on presented credentials. We present an algorithm for find-

ing approximately optimal mechanisms by leveraging the problem

structure to reduce complexity by orders of magnitude.

The algorithm immediately revealed two surprising results: Ac-

curately incorporating easily-lost credentials improves cryptocur-

rency wallet security by orders of magnitude. And novel usage of

(easily-leaked) security questions improves authentication security

for online services.

1 INTRODUCTION
Authentication is a cornerstone of access control and security [54,

57]. From ancient times [17] to the early days of the Internet, pass-

words were often sufficient [10]. As stakes grow higher with the

adoption of online services, companies deploy advanced authentica-
tion mechanisms [1, 2], and abandon tools like the easily guessable

“security questions” like “name of first pet.” Nascent technologies

raise the bar further—in cryptocurrencies, in the event of credential

loss or leak, there is no central authority that can assist in asset

recovery. Users thus choose advanced solutions (e.g., [3]), utilizing

multiple well-kept cryptographic keys. And even someweb services

(e.g., the U.S. government website [24]) require multi-factor authen-

tication, while allowing users to combine various credentials like

passwords, fingerprints, face recognition, text messages, security

keys and more; thus, users choose their own authentication mecha-

nism. At times, the number of credentials is larger than what the

user is aware of. For example, online services (e.g., Google [21, 22])

use a device’s location, IP address or cookies as additional creden-

tials. Nevertheless, identity theft incidents are frequent [19], so is

loss of Bitcoin [37, 60], as well as digital asset theft, including a

recent heist valued at $600M due to a single company’s key mis-

management [30]. Those illustrate the urgent need to revisit the

fundamentals of user authentication.

Previous work (§2) proposed and deployed various authentica-

tion solutions. These encompass numerous credential types, like
passwords, biometrics, and smart cards [6]. But no single credential

can be completely relied on [62, 67], leading to the development of

advanced mechanisms such as multi-factor authentication (MFA)

and interactive protocols [1–3]. However, these works leave open

the question of how to model and compare mechanisms’ security.

Eyal [18] analyzes a specific type of mechanism, defined by mono-

tonic Boolean functions on presented credentials for a small number

of credentials. Maram et al. [35] study the authentication problem,

but with a bounded-delay communication channel between the

mechanism and the user—which is often not available. E.g., when

logging in to a web service or issuing small cryptocurrency trans-

actions.

In this work, we study general authentication mechanisms in the

common asynchronous setting, with the goal of finding optimally

securemechanisms. First, we define the asynchronous authentication
problem (§3), where an authentication mechanism interacts with a

user and an attacker (representing all adversarial entities [18, 35])
and tries to identify the user. The mechanism utilizes credentials.

Each credential can be known to the user, the attacker, both, or

neither. The states of all credentials define a scenario. A mechanism

is successful in a scenario if it correctly identifies the user, for all

attacker behaviors and message delivery times. The profile of a
mechanism is the set of all scenarios in which it is successful.

We seek to reason about a general mechanism’s success

when message delivery time is unbounded, yet cryptographic as-

sumptions bound running time according to a security parameter.

For simplicity, we first consider ideal credentials that cannot be

forged, following similar abstractions in distributed-systems lit-

erature [43, 44, 59, 63, 65]. We defer a model that considers cryp-

tographic assumptions to the appendix. Roughly, we require suc-

cess when the security parameter is large enough, otherwise non-

decision is acceptable. This approachmay be of independent interest

for analyzing distributed protocols that rely on cryptography in

asynchronous networks.

To design a mechanism, one must estimate the probabilities of

credential faults, e.g., loss or leak [18]. An optimal mechanism has

the maximum probability of success given those estimates. To find

optimal mechanisms we turn our attention to Boolean mechanisms:
mechanisms that decide according to a Boolean function of the

credentials presented to them. For any authentication mechanism,

there exists a Boolean mechanism that dominates it—one that suc-

ceeds in the same scenarios or more (§4.1). The proof uses a series

of reductions. First, interactive message exchanges do not enhance

mechanism security—every interactive mechanism is dominated by

ar
X

iv
:2

31
2.

13
96

7v
2

 [
cs

.C
R

]
 2

5
Ju

n
20

24

https://orcid.org/0009-0008-6334-1183
https://orcid.org/0000-0001-7595-2258

Marwa Mouallem and Ittay Eyal

a non-interactive mechanism (assuming as a theoretical construct
1

that credential availability can be proven with a single message).

Second, decisions can be made based solely on credential availabil-

ity proofs. Third, even if randomness were utilized, there exists a

dominating deterministic one-shot mechanism. The proofs are con-

structive and rely on a mechanism’s ability to simulate an execution

of another. Finally, for any deterministic mechanism, there exists a

dominating mechanism defined by a monotonic Boolean function

of the credentials’ availability—a monotonic Boolean mechanism.

Let us thus focus on such mechanisms. We show that any mono-

tonic Boolean mechanism defined by a non-constant function is

not dominated (maximal), and any maximal mechanism is equiva-

lent (same profile) to a monotonic Boolean mechanism (§4.2). This

result shows that studying such mechanisms suffices in the asyn-

chronous setting and reveals a somewhat surprising fact: There is

no probability-agnostic hierarchy of Boolean mechanisms in the

asynchronous setting unlike under synchrony [35]. For example,

with two credentials 𝑐1 and 𝑐2, consider the mechanism where

both 𝑐1 and 𝑐2 are required to authenticate and the mechanism

where only 𝑐1 is required. One can easily verify that neither mech-

anism dominates the other. In fact, this is true in general, for any

two non-trivial 𝑛-credential Boolean mechanisms.

Since there is no hierarchy of Boolean mechanisms, in general,

any such mechanism could be optimal. But evaluating all possible

mechanisms, as done by Eyal [18], quickly becomes prohibitively

complex, as their number grows super-exponentially with the num-

ber of credentials [15].

Instead, we present a scenario-based algorithm to find approxi-

mately optimal mechanisms (§5). Given 𝛿 > 0, the algorithm finds

a 𝛿-optimal mechanism, i.e., a mechanism whose success proba-

bility is at most 𝛿 lower than that of an optimal mechanism. The

algorithm works greedily by building a mechanism that succeeds

in scenarios with the highest probability. Once no more scenarios

can be added, it removes existing scenarios to add new ones. An

analysis of different probability distributions shows that it is suf-

ficient to focus on a small number of high-probability scenarios.

Rather than searching all mechanisms, the algorithm stops when

the scenarios that might be added have additional probability lower

than 𝛿 . This is calculated by bounding the number of scenarios in

which a mechanism can succeed.

Our algorithm allows for finding approximately-optimal mecha-

nisms with many credentials. This is directly useful for mechanism

design. For example, when designing a cryptocurrency wallet, users

tend to use a handful of high-quality credentials [36, 40], like hard-

ware keys and long memorized mnemonics. However, we show

that adding a few easy-to-lose credentials (e.g., passwords that the

user remembers but does not back up) reduces wallet failure proba-

bility by orders of magnitude. Similarly, incorporating easy-to-leak

credentials (e.g., the name of the user’s pet) with high-quality cre-

dentials achieves a similar effect. (Though not in the way such

credentials were typically used.)

In summary (§6), our contributions are: (1) formalization of the

asynchronous authentication problem; (2) proof that every maximal

1
In practice interactivity and randomness are useful, e.g., if multiple steps are required

to prove credential availability (e.g., challenge-response [48] and interactive proofs of

knowledge [20]), and for mechanisms usability and deployability [6] (e.g., a mechanism

sending an SMS with a verification code only after verifying a password).

mechanism is equivalent to a monotonic Boolean function; (3) proof

that any two non-trivial monotonic Boolean mechanisms are either

equivalent or neither is better, (4) an approximation algorithm of

optimal mechanisms given the credentials fault probabilities, and

(5) evaluation of realistic mechanisms and concrete lessons for their

improvement.

2 RELATEDWORK
Authentication is a fundamental aspect of security [42, 53, 54, 56, 57]

that continues to be an active area of research [41, 68]. Whether

explicitly or implicitly, previous work mostly addressed two per-

spectives: credentials and protocols. Credentials are the informa-

tion used to authenticate a user such as passwords [39], one-time

passwords (OTPs) [31], biometrics [66], and physical devices [50].

Protocols define the procedures for authenticating a user based on

her credentials. Examples include Kerberos [58] for devices across

a network and cryptocurrency wallets [14, 32, 61]. Our focus is on

protocols, particularly the abstract mechanisms behind the proto-

cols, which have received only scant attention.

Vashi et al. [62] and Bonneau et al. [6] analyzed various credential

types. However, both surveys ultimately concluded that no single

credential type offers perfect security, underscoring the impor-

tance of protocols that incorporate multiple credentials. Velásquez

et al. [64] survey single and multi-factor authentication schemes,

examining different credentials combined into multi-factor meth-

ods. Zimmermann et al. [67] rate dozens of deployed authentication

methods, focusing on user challenges in credential protection rather

than the security of the authentication mechanism.

Burrows et al. [11] describe the beliefs of parties involved in au-

thentication protocols as a consequence of communication to realize

who has which credentials. Delegation Logic [33] is a logic-based

approach to distributed authorization, offering a formal framework

for reasoning about delegation relationships. Neither work com-

pares mechanism security, which is the goal of this work.

The importance of authentication mechanisms has grown sig-

nificantly due to the increasing value of digital assets, such as

cryptocurrencies [47] and NFTs [46]. This is especially true in de-

centralized systems, where users are responsible for securing their

assets and, unlike centralized systems, no fallback authority ex-

ists. Consequently, numerous cryptocurrency wallets have been

developed. The wide variety of authentication mechanisms used

in cryptocurrency wallets highlights the need for a formal way to

compare them. Nevertheless, previous work focused on credential

management and implementation [5, 7].

Hammann et al. [26] uncover vulnerabilities arising from the

links between different user credentials and accounts, where one

can be used to log into the other. The paper focuses on the connec-

tion between different credentials and accounts. However, it does

not address the security of different mechanisms, which we do in

this work.

Eyal [18] analyzes mechanisms that are Boolean functions of

credential availability. We analyze general mechanisms in an asyn-

chronous network and show that all maximally secure mechanisms

in this setting can be reduced to mechanisms that are Boolean

functions of credentials availability. Eyal finds optimal mechanisms

given the probabilities of credential faults for up to 5 credentials

using a brute force search and bounds the failure probabilities of

Asynchronous Authentication

optimalmechanisms using a heuristic approach. Although the brute-

force search ensures optionality, it is not computationally feasible

for more credentials. We provide an approximationmethod for near-

optimal mechanisms with a large number of credentials based on

our observations on the structure of maximally secure mechanisms.

Maram et al. [35] study interactive authentication, where the

user and the attacker interact with the mechanism over a synchro-

nous network. They also introduce security profiles of mechanisms,

which we use in our analysis. However, unlike our work, the pa-

per assumes a synchronous communication model, which is not

practical in many cases, e.g., when processing small payments or

logging in to a web service. In such cases, waiting for the true user

to receive a message (e.g., sent by email) is unacceptable.

In contrast to the synchronous case, we show that in the asyn-

chronous case, mechanism security does not benefit from inter-

activity. Our results do not imply that interactive mechanisms

are not useful. On the contrary, are widely used in practice, e.g.,

in multi-factor authentication [1] and challenge-response proto-

cols [48]. Consider for example Google’s security alerts [23] that

notify the user of suspicious activity in her account, allowing her

to confirm or deny the activity. This is an interactive asynchro-

nous two-factor authentication mechanism, where the user can

respond to the mechanism’s request at any time. An equivalent

non-interactive mechanism can be one that requires both the user’s

password and her fingerprint to authenticate. However, in this case,

the non-interactive mechanism is less convenient for the user. For

every interactive mechanism, we show a theoretical reduction to a

non-interactive mechanism that succeeds in the same scenarios or

more. All maximally secure mechanisms have equivalent mecha-

nisms that are Boolean functions of credentials availability, which

is not the case in the synchronous model.

Although our analysis uses methods similar to those used in

distributed systems’ theory like asynchronous communication and

simulations, the authentication problem is distinct from classical

problems like consensus or broadcast [16]: Success is defined by

the decision of a single party and not multiple ones, and credentials

take a central role.

3 MODEL
We formalize the asynchronous authentication problem (§3.1), spec-

ifying an execution, its participants, and their behavior. Then we

define mechanism success and the relation between different mech-

anisms (§3.2).

3.1 Asynchronous Authentication
The system comprises three entities, an authentication mecha-
nism 𝑀 and two players: a user 𝑈 and an attacker 𝐴. All three

are finite deterministic automata that can draw randomness from a

random tape 𝑣 , an infinite stream of random bits. We specify the

automata as computer programs [52].

An execution is orchestrated by a scheduler, whose pseudocode
is given in Appendix A.2. Each of the players interacts with the

mechanism by sending and receiving messages. The scheduler,

parametrized by 𝛾ID ∈ {0, 1}, assigns the user identifier 𝛾ID and the

attacker identifier (1 − 𝛾ID). E.g., if 𝛾ID = 0, then the user is player 0

and the attacker is player 1. The identifiers serve a similar purpose

to that of cookies that identify a website visitor during a single

session. They allow the mechanism to identify and distinguish

between the players during an execution without revealing which

is the user.

To facilitate authentication, the players take advantage of pri-

vate information to convince the mechanism that they are the user.

This information is a set of credentials that might be data (e.g.,

passwords), biometric properties (e.g., fingerprints), and physical

objects (e.g., phones or smart cards). Each credential has two parts:

a public part, known to the mechanism, and a secret part. For exam-

ple, when using a password to authenticate to a website, the user

remembers the password (the secret part) and the website stores

its hash (the public part); or when using public key authentication,

a blockchain has the public key (the public part) and the user has

the private key (the secret part).

Definition 1 (Credential). A credential 𝑐 is a tuple 𝑐 = (𝑐𝑃 , 𝑐𝑆)
where 𝑐𝑃 is the public part of the credential and 𝑐𝑆 is the secret part
of the credential.

The system uses a set of 𝑛 credentials, {𝑐1, ..., 𝑐𝑛}. A

credential can be available to a player. An availability vector repre-
sents the availability of all credentials to a player. Each entry 𝑖 in the

vector indicates the availability of credential 𝑖 . Denote by 𝜎𝑈 , 𝜎𝐴 the

availability vector of the user and the attacker respectively. A sce-

nario 𝜎 is a tuple of availability vectors (𝜎𝑈 , 𝜎𝐴). Denote by𝐶𝜎
𝑈
,𝐶𝜎

𝐴
the set of credentials available to the user and attacker in scenario 𝜎

respectively. The attacker is polynomially bounded [13, 28] and

cannot guess the secret parts of the credentials better than a ran-

dom guess in a polynomial number of steps, except with negligible

probability.

The system uses a credential generation function gen (𝑛) that
generates a set of 𝑛 credentials {(𝑐𝑃

𝑖
, 𝑐𝑆
𝑖
)}𝑛

𝑖=1
. Anyone with the se-

cret part of a credential can prove its availability to the mechanism,

and anyone without the secret part cannot forge a proof of its avail-

ability. In practice, cryptographic assumptions require bounding

the execution time based on a security parameter [49]. However, in

the asynchronous system, message delivery time is unbounded, and

so is execution time—the mechanism is only required to eventually

decide.

For simplicity, we first assume that credentials are ideal, that
is, that their cryptographic guarantees are maintained indefinitely.

This is a common assumption in distributed-systems literature, e.g.,

[43, 44, 59, 63, 65]. We properly reconcile the tension between the

models in Appendix A; intuitively, the mechanism is only required

to succeed when the security parameter is large enough. The results

hold for this model as well, as shown in Appendix B.

An authentication mechanism exchanges messages with the play-

ers to decide which is the user.

Definition 2 (Authentication mechanism). An authentica-

tion mechanism𝑀 is a finite deterministic automaton specified by
two functions, gen𝑀 (·) and step𝑀 (·):

• gen𝑀 (𝑛), where 𝑛 is the number of credentials, is an ideal
credential generator. And

• step𝑀 (msg, 𝑖), where msg is the message the mechanism re-
ceived (perhaps no message, represented by msg = ⊥), sent
from player 𝑖 (if no message was received, 𝑖 = ⊥), is a func-
tion that updates the state of the mechanism and returns a
pair (msg𝑠0,msg𝑠1) of sets of messages (maybe empty) to

Marwa Mouallem and Ittay Eyal

send to the players by their identifiers. It can access and up-
date the mechanism’s state and the set of credentials public
part {𝑐𝑃

𝑖
}𝑛
𝑖=1

.
The mechanism uses a variable decide𝑀 that marks which identifier it
decides belongs to the user. The variable’s initial value is ⊥. When𝑀

reaches a decision, it updates the variable to an identifier value.
A player is defined by its strategy, a function that defines its

behavior. Formally,

Definition 3 (Strategy). A strategy 𝑆 of a player 𝑝 ∈ {𝑈 ,𝐴}
is a function that takes a message from the mechanism as input
(maybe empty, denoted by ⊥), and has access to the player’s state
and credentials 𝐶𝜎

𝑝 . It updates the player’s state and returns a set of
messages to be sent back to the mechanism.

We now describe the execution of the system. Full details includ-

ing pseudocode are in Appendix A.2. The execution consists of two

parts: setup (Setup function) and amain loop (Execute function). The
setup generates a set of 𝑛 credentials using the function gen𝑀 (𝑛),
and assigns each player credentials according to the scenario 𝜎 .

Then it assigns an identifier to each player based on 𝛾ID ∈ {0, 1}.
Whenever a random coin is used by𝑀 or the players, the result is

the next bit of 𝑣 .

Once the setup is complete, the main loop begins and both play-

ers 𝑝 ∈ {𝑈 ,𝐴} can send messages to the mechanism, each based

on her strategy 𝑆𝑝 and set of credentials 𝐶𝜎
𝑝 . Time progresses in

discrete steps. The communication network is reliable but asyn-

chronous. Messages arrive eventually, but there is no bound on the

time after they were sent and no constraints on the arrival order.

This is implemented as follows. The scheduler maintains three

sets of pending messages, one for each entity. The scheduler is

parametrized by an ordering function 𝛾ord and a random tape 𝑣𝛾 .

In each step, it uses 𝛾ord to choose a subset of messages (maybe

empty) from each of the pending message sets, and returns them

as an ordered list. The scheduler’s random coins used in 𝛾ord are

taken from 𝑣𝛾 . The scheduler removes the chosen messages from

the pending message sets.

Each player receives the messages chosen by the ordering func-

tion 𝛾ord and sends messages to the mechanism according to her

strategy. These messages are added to the mechanism’s pending

messages set. Similarly, the mechanism receives the messages cho-

sen by𝛾ord. After everymessagemsg it receives from the player with

identifier 𝑖 ∈ {0, 1}, the mechanism runs its function step𝑀 (msg, 𝑖)
and sends messages to the players.

In each step, the scheduler checks if decide𝑀 ≠ ⊥, meaning that

the mechanism has reached a decision. Once it does, the execution

ends and the player with thematching index (either 0 or 1) wins. The

tuple (𝛾ID, 𝛾ord, 𝑣𝛾) thus defines the scheduler’s behavior. And an ex-

ecution 𝐸 is thus defined by its parameter tuple (𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣);
by slight abuse of notation we write 𝐸 = (𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣).

We define the winner of an execution as the player with the

identifier that the mechanism decides in that execution.

3.2 Mechanism Success
A mechanism is successful in a scenario 𝜎 if the user wins against

all attacker strategies and schedulers. Formally,

Definition 4 (Mechanism success). A mechanism 𝑀 is suc-
cessful in a scenario 𝜎 if there exists a user strategy 𝑆𝑈 such that for

all attacker strategies 𝑆𝐴 , schedulers 𝛾 , and random tapes 𝑣 , the user
wins the execution 𝐸 = (𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣). Such a user strategy 𝑆𝑈
is a winning user strategy in 𝜎 with𝑀 . Otherwise, the mechanism
fails.

The set of scenarios in which the mechanism succeeds is its

profile (as Maram et al. [35] defined for a synchronous network).

Definition 5 (Profile [35]). A profile is a set of scenarios. The
profile of a mechanism𝑀 , denoted Π(𝑀), is the set of all scenarios
in which𝑀 succeeds.

We are now ready to define the asynchronous authentication
problem.

Definition 6 (Asynchronous authentication). Given a pro-
file 𝜋 , a mechanism 𝑀 solves the 𝜋 asynchronous authentication

problem if 𝑀 is successful in all scenarios in 𝜋 (maybe more),
i.e., 𝜋 ⊆ Π(𝑀).

In the asynchronous setting, the profile defines a relation be-

tween any two mechanisms 𝑀1 and 𝑀2 with the same number

of credentials. The following definition is similar to that given by

Maram et al. [35] for a synchronous network, but as wewill consider

individual credential probabilities, our definition is permutation

sensitive.

Definition 7 (Mechanisms order). A mechanism 𝑀1 domi-

nates (resp., strictly dominates) a mechanism𝑀2 with the same num-
ber of credentials if the profile of𝑀1 is a superset (resp., strict superset)
of the profile of𝑀2: Π(𝑀2) ⊆ Π(𝑀1) (resp., Π(𝑀2) ⊂ Π(𝑀1)).

Two mechanisms𝑀1 and𝑀2 are equivalent if they have the same
profile Π(𝑀1) = Π(𝑀2). And incomparable if neither dominates the
other Π(𝑀1) ⊈ Π(𝑀2) and Π(𝑀2) ⊈ Π(𝑀1).

4 MAXIMAL MECHANISMS
Having defined partial ordering on mechanisms, we proceed to

identify maximal mechanisms, i.e., mechanisms that are not strictly

dominated. We show that for any mechanism there exists a dom-

inating mechanism that is a Boolean function of the credentials’

availability (§4.1). Thenwe show that mechanisms defined bymono-

tonic Boolean functions are maximal, and all maximal mechanisms

are equivalent to a Boolean mechanism (§4.2).

4.1 Domination by Boolean Mechanisms
We show that any mechanism is dominated by a mechanism that is

a Boolean function of the credentials’ availability. We take 4 similar

steps. First, we show that for all mechanisms there exists a dom-

inating one-shot mechanism that decides based on up to a single

message from each player (§4.1.2). Second, we show that decisions

can be made solely on credential availability proofs (§4.1.3). Then

we show that randomness does not improve the security of a one-

shot mechanism (§4.1.4). Finally, we show that for any one-shot,

deterministic mechanism, there exists a dominating mechanism

defined by a monotonic Boolean function of the credentials’ avail-

ability (§4.1.5).

Note 1 (Practicality of one-shot and deterministic mech-

anisms). Numerous interactive and randomized mechanisms are
practical and widely used, e.g., challenge-response protocols [48] and
interactive proofs of knowledge [20]. While we prove a reduction

Asynchronous Authentication

from any mechanism to a one-shot and deterministic mechanism, the
propositions below are for theoretical purposes and do not necessarily
imply that such mechanisms are practical nor suggest that they should
replace interactive, randomized mechanisms.

We rather show that, security-wise, for every interactive or random
mechanism, there exists a non-interactive deterministic mechanism
that succeeds in the same scenarios or more. This is only used as a
proof step of the reduction to monotonic Boolean functions. However,
the non-interactive mechanism might be less practical. E.g., a 2FA
mechanism that first requires a password and only when the password
is correct, it asks for a one-time password sent to the user’s phone, is
more practical than a mechanism that requires the user to send both
the password and the one-time password in a single message, as it
saves the company the cost of sending the one-time password in case
the password is incorrect.

4.1.1 Step template. Each step in our proof has the following parts:

Given amechanism𝑀1 we show it is dominated by amechanism𝑀2

with a certain property.We prove constructively by defining amech-

anism𝑀2 and show the required property holds. The domination

proof takes advantage of a mechanism’s ability to simulate the

execution of another mechanism. That is, the mechanism𝑀2 takes

a mechanism𝑀1, two strategies 𝑆0 and 𝑆1, the sets of credentials

each strategy uses𝐶0 and𝐶1, an ordering function 𝛾ord, a scheduler

random tape 𝑣𝛾 , a random tape 𝑣 , and a number of steps 𝑡 , and

runs Execute(𝑀1, 𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾ord, 𝑣𝛾 , 𝑣, 𝑡) (Appendix A.2). Note

that when calling the function Execute, if 𝑡 is not explicitly given, it

is assumed to be unbounded. The simulation result is the identifier

that decide𝑀1
gets during the execution of Execute, if it terminates

with a decision, and ⊥ otherwise.

Note 2 (Mechanism’s computational resorces). In the fol-
lowing proofs, we assume the constructed mechanism has sufficient
computational resources to simulate the original mechanism in a sin-
gle step. At the end of this section, we show that there always exists a
dominating polynomial mechanism.

Note 3 (Plaintext credentials). In the following proofs, we
assume the user sends the secret part of her credentials (as with pass-
words). Although this is not always the case (e.g., with cryptographic
signatures), this is only a theoretical construction and does not suggest
that the user should generally send her secrets in plaintext. In practice,
she must only be able to prove she can access them.

Note 4 (Mechanism as a function). When constructing a mech-
anism𝑀new given a mechanism𝑀 , we use the notation𝑀new (𝑀) to
denote the mechanism𝑀new is a function of𝑀 . When it is clear from
the context, we omit the argument𝑀 and write𝑀new.

4.1.2 One-shot Mechanisms. We define a one-shot (OS) mechanism

as one that, in every execution, reaches a decision based only on

the first message it receives (if any) from each player. If a player

sends multiple messages, the mechanism ignores all but the first it

receives.

Definition 8 (One-shot mechanism). A mechanism 𝑀 is a
one-shot mechanism if for all scenarios 𝜎 , schedulers 𝛾 , and random
tapes 𝑣 , and for all user strategies 𝑆𝑈 , 𝑆′𝑈 and attacker strategies 𝑆𝐴 , 𝑆 ′𝐴
such that the first message that𝑀 receives from each player (if any) in
the executions 𝐸1 = (𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣) and 𝐸2 = (𝑀,𝜎, 𝑆 ′

𝑈
, 𝑆′

𝐴
, 𝛾, 𝑣)

Algorithm 1:𝑀OS (𝑀)’s step function

step𝑀OS
(msg, 𝑖)

1 for 𝑗 ∈ {0, 1} do
2 if processing𝑗 = 1 then // A message already received from 𝑗

3 (𝑆 𝑗 ,𝐶 𝑗 , 𝑣𝛾,𝑗 , 𝑣
′
𝑗
) ← Sim𝑗 // Read simulation params

4 𝑆1− 𝑗 ,𝐶1− 𝑗 ← ⊥,⊥
5 decide𝑀OS←Execute(𝑀,𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾

v
ord, 𝑣𝛾,𝑗 , 𝑣

′
𝑗
, 𝑡) // Simulate𝑀 ’s execution

6 else if 𝑗 = 𝑖 then // First message received from 𝑖
7 processing𝑖 ← 1 // Mark receiving a message from 𝑗

8 𝑆𝑖 ,𝐶𝑖 ← extractStrategy(msg) // Extract strategy

9 𝑆1−𝑖 ,𝐶1−𝑖 ← ⊥,⊥
10 if 𝑆𝑖 = ⊥ then // Invalid strategy

11 decide𝑀OS ← 1 − 𝑖 // The other player wins

12 else
13 Sim𝑖 ← (𝑆𝑖 ,𝐶𝑖 , 𝑣𝛾 , 𝑣

′) // Save simulation params

14 decide𝑀OS ← Execute(𝑀,𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾
v
ord, 𝑣𝛾 , 𝑣

′, 𝑡) // Simulate𝑀 ’s execution

15 return ⊥,⊥ // No messages to send

is the same and in the same order, then𝑀 reaches the same decision
or does not decide in both executions.

Given any mechanism, we construct a dominating one-shot

mechanism by simulating the original mechanism’s execution.

Construction 1. We define 𝑀OS by specifying the func-
tions gen𝑀OS

(·) and step𝑀OS
(·). The credentials’ generation func-

tion gen𝑀OS
(·) is the same as gen𝑀 (·).

The mechanism’s step function proceeds as follows (Algorithm 1.)
If it does not receive a message during its execution, it does nothing.
If it receives multiple messages from a player, it ignores all but the
first one (lines 2 and 7). If𝑀OS receives a message that is not a valid
strategy and credentials pair, then it decides the identifier of the other
player (line 11).

Consider the first message it receives, and let 𝑡1 ∈ N+ be the step in
which it arrives. If the message is an encoding of a valid strategy and
credentials pair, then𝑀OS simulates an execution of𝑀 (line 14) with
the given strategy and credentials while setting both the opponent’s
strategy and credentials to ⊥ each (lines 8-9). It uses a scheduler
random tape 𝑣𝛾 and an execution random tape 𝑣 ′ drawn from 𝑣 ,
and an ordering function 𝛾

𝑣𝛾

ord that chooses the time and order of
message delivery randomly based on 𝑣𝛾 . The simulation runs for 𝑡1
steps. If𝑀’s simulated execution decides then𝑀OS decides the same
value. Otherwise,𝑀OS saves the above execution details (line 13) and
waits for the next message.

In each time step 𝑡 ′ > 𝑡1 between the message arrival from the
first player and the message arrival from the second player (might be
infinite),𝑀OS reads the simulation parameters it saved (line 3) and
runs the same simulation with the exact same parameters as before
but for 𝑡 ′ ∈ {𝑡1 +1, 𝑡1 +2, ...} steps each time (line 5). If the simulation
reaches a decision, then𝑀OS decides the same value.

If a message arrives from the other player at some time 𝑡2 > 𝑡1, then,
similar to the previous case, 𝑀OS simulates an execution of 𝑀 with
the given strategy and credentials while setting the opponent’s to ⊥
for 𝑡2 steps. And again, if𝑀 ’s simulated execution decides, then𝑀OS
decides the same value.

Otherwise, 𝑀OS saves the above execution details (line 13) and
continues to simulate the execution of𝑀 for 𝑡 ′′ ∈ {𝑡2 + 1, 𝑡2 + 2, ...}
steps. In each of its steps,𝑀OS runs two simulations of𝑀 ’s execution,
one with the first player’s simulation parameters and the other with
the second player’s simulation parameters, both for 𝑡 ′′ steps (line 5).
Once a simulation decides, then𝑀OS decides the same value.

Marwa Mouallem and Ittay Eyal

The mechanism𝑀OS (𝑀) is one-shot as it decides based only on

the first message it receives from each player. To prove it domi-

nates𝑀 , we first show that the attacker’s message does not lead to

her winning.

Lemma 1. Let 𝜎 be a scenario and let𝑀 be a mechanism successful
in 𝜎 . Then, for all executions of𝑀OS (𝑀) in scenario 𝜎 in which the
function step𝑀OS (𝑀) (·) receives a message from the attacker for the
first time, either the function sets decide𝑀OS to the user’s identifier or
the simulated execution of𝑀 does not decide.

Proof. Let 𝜎 be a scenario and let𝑀 be a mechanism success-

ful in 𝜎 . Consider an execution of 𝑀OS in 𝜎 in which the func-

tion step𝑀OS
(·) receives an attacker’s message for the first time.

Let 𝑡 be the time step in which the message arrives and denote the

identifier of the attacker by 𝑖 ∈ {0, 1}. If the attacker’s message is

not a valid encoding of a strategy and credentials set, then 𝑀OS
decides the identifier of the user, and we are done.

Otherwise, the attacker’s message is an encoding of a valid strat-

egy and credentials pair (𝑆𝐴, 𝐶𝐴). In this case,𝑀OS sets the strate-

gies and credentials to 𝑆𝑖 = 𝑆𝐴 , 𝐶𝑖 = 𝐶𝐴 , 𝑆1−𝑖 = ⊥, and 𝐶1−𝑖 = ⊥,
𝛾
𝑣𝛾

ord, 𝑣𝛾 and 𝑣 ′ as in the definition of𝑀OS, and simulates𝑀 ’s execu-

tion by running Execute(𝑀, 𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾
𝑣𝛾

ord, 𝑣𝛾 , 𝑣
′, 𝑡). If the simu-

lation returns the user’s identifier or does not decide for any 𝑡 , we

are done. The only remaining option is that the simulation returns

the identifier of the attacker. To show this is impossible, assume by

contradiction that there exists a 𝑡 ′ ≥ 𝑡 for which the attacker wins

in this simulated execution.

First, we show that there exists an execution of𝑀 that is identical

to the simulated one. Let 𝛾 = (𝛾OSID , 𝛾
𝑣𝛾

ord, 𝑣𝛾) be a scheduler such that

the user gets the same identifier as in the execution of𝑀OS, with

the same ordering function and scheduler random tape that 𝑀OS
uses to simulate𝑀 ’s main loop. And let 𝑣𝑀 be a random tape such

that when the execution 𝐸 = (𝑀,𝜎,⊥, 𝑆𝐴, 𝛾, 𝑣𝑀) reaches the main

loop, all the next bits of 𝑣𝑀 are equal to 𝑣 ′. Note that the main loop

of 𝐸 is the same as the one𝑀OS simulates in 𝐸OS. And the attacker

wins in the execution 𝐸 (by the contradiction assumption).

We thus established a simulated execution in which the attacker

wins, and in this simulation, there exists a time 𝜏 ≤ 𝑡 ′ when the

simulated𝑀 decides the identifier of the attacker. Since𝑀 is suc-

cessful in scenario 𝜎 , there exists a winning user strategy 𝑆𝑈 . Let 𝛾 ′

be a scheduler such that in the execution 𝐸′ = (𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾
′, 𝑣𝑀)

it behaves like 𝛾 except𝑀 receives the user’s messages not before 𝜏 .

Such a scheduler exists since the communication is asynchronous

and message delivery time is unbounded.

At any time step before 𝜏 , the mechanism𝑀 sees the same exe-

cution prefix whether it is in the execution 𝐸 with an empty user

strategy or in the execution 𝐸′ with a winning user strategy. Thus,

it cannot distinguish between the case where it is in 𝐸 or 𝐸′ at 𝜏 .
Since in 𝐸 the mechanism𝑀 decides at 𝜏 ,𝑀 must decide the same

value at 𝜏 in 𝐸′. That is, the attacker wins also in the execution 𝐸′,
contradicting the fact that 𝑆𝑈 is a winning user strategy for𝑀 in 𝜎 .

Thus, the attacker cannot win in the simulated execution of𝑀 . □

Now we can prove domination.

Proposition 1. For all profiles 𝜋 , an authentication mechanism
that solves the 𝜋 asynchronous authentication problem is dominated
by a one-shot mechanism.

Proof. Assume that𝑀 is successful in a scenario 𝜎 . Then, there

exists a user strategy 𝑆𝑈 such that for every attacker strategy 𝑆𝐴 ,

scheduler 𝛾 , and random tape �̃� , the user wins the corresponding

execution (𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, �̃�).
We now show that𝑀OS is successful in scenario 𝜎 as well. Denote

by 𝑆OS
𝑈

the user strategy that sends an encoding of the winning

user strategy 𝑆𝑈 and a set of credentials𝐶𝑈 ⊆ 𝐶𝜎
𝑈
that 𝑆𝑈 uses in a

single message on the first step. And consider any execution of𝑀OS
in scenario 𝜎 with the user strategy 𝑆OS

𝑈
. Note: In the Setup function

of an execution, the first player in the tuple is always the user and

the second is the attacker. However, in the Execute function, the
first player is the player with identifier 0, which can be the user or

the attacker, and the second is the player with identifier 1.

As 𝑆OS
𝑈

sends a message in the first step, the user’s message

eventually arrives at some time step 𝑡 . The mechanism receives and

processes at least one message during its execution; we consider

two cases separately: a user’s message arrives first, or an attacker’s

message arrives first.

Denote by 𝑖 ∈ {0, 1} the identifier of the player whose mes-

sage arrives first and by 𝑡1 its arrival time. If the user’s mes-

sage msg arrives first with the encoded strategy and credential

set (𝑆𝑈 , 𝐶𝑈) = extractStrategy(msg), then𝑀OS sets the strategies

to 𝑆𝑖 = 𝑆𝑈 , 𝐶𝑖 = 𝐶𝑈 , 𝑆1−𝑖 = ⊥, and 𝐶1−𝑖 = ⊥, the sched-

uler random tape 𝛾𝑣 , the ordering function 𝛾
𝑣𝛾

ord, and the random

tape 𝑣 ′ as described in 𝑀OS’s definition, and simulates 𝑀’s exe-

cution by running Execute(𝑀, 𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾
𝑣𝛾

ord, 𝑣𝛾 , 𝑣
′, 𝑡1). Denote

by 𝛾 = (𝛾OSID , 𝛾
𝑣𝛾

ord, 𝑣𝛾) the scheduler such that the user gets the

same identifier as in the execution of𝑀OS, with the same ordering

function and scheduler random tape that𝑀OS uses to simulate𝑀 ’s

main loop. Because 𝑆𝑈 is a winning user strategy in 𝑀 , the user

wins the execution 𝐸 = (𝑀,𝜎, 𝑆𝑈 ,⊥, 𝛾, 𝑣 ′). Therefore, there exists a
time step 𝜏 such that 𝑀 decides the user at 𝜏 . If 𝑡1 ≥ 𝜏 , then 𝑀OS
decides the user as well. Otherwise, 𝑡1 < 𝜏 , then 𝑀OS repeatedly

simulates𝑀 ’s execution for 𝑡 ′ ∈ {𝑡1 + 1, 𝑡1 + 2, ...} steps. If no other
message arrives before 𝜏 , then once it reaches 𝑡 ′ = 𝜏 ,𝑀OS decides

the user as well. Otherwise, if the attacker’s message arrives at

some 𝑡2 < 𝜏 , and by Lemma 1, either 𝑀OS decides the user or the

simulated execution of𝑀 with the attacker’s strategy and creden-

tials does not decide. Again, if 𝑀OS decides the user, then we are

done. Otherwise,𝑀OS continues to simulate both executions of𝑀

with the user’s and attacker’s simulations parameters, respectively,

for 𝑡 ′′ ∈ {𝑡2 + 1, 𝑡2 + 2, ...} steps. Finally, at 𝑡 ′′ = 𝜏 , the simulated

execution of the user’s strategy decides the user, so 𝑀OS decides

the user as well.

Now assume the attacker’s message arrives first to𝑀OS at time 𝑡1.

Again by Lemma 1, either 𝑀OS decides the user or the simulated

execution of 𝑀 in 𝜎 with the attacker’s strategy does not decide.

If𝑀OS decides the user, then we are done. Otherwise, the simulation

does not decide for all 𝑡 ≥ 𝑡1, and𝑀OS waits for the next message

from the other player (the user). As long as no other message

arrives,𝑀OS keeps simulating the same execution in each step for

a longer time but does not reach a decision.

Asynchronous Authentication

Because the user’s message must eventually arrive,𝑀OS receives

the user’s message with her encoded strategy and credentials at

time 𝑡2 > 𝑡1. Then similar to the previous case,𝑀OS sets the param-

eters as described in Construction 1, and simulates𝑀’s execution.

By the same argument as before, we get that once 𝑡2 ≥ 𝜏 , the sim-

ulation terminates and returns the user’s identifier, so 𝑀OS also

returns it.

Overall we showed that the user wins in all executions of𝑀OS
in scenario 𝜎 . Thus, it is successful in 𝜎 . And we conclude that the

one-shot mechanism𝑀OS dominates𝑀 . □

We illustrate Proposition 1 with an example.

Example 1. Consider a mechanism 𝑀ex with two credentials: a
password 𝑐1 and an OTP 𝑐2. Authentication with𝑀ex has three steps:
First, the player clicks "start". Then, she enters her username and
password. If those are correct, she is asked to enter the OTP. If all three
steps are done successfully, the player wins and gets authenticated. In
case no player wins, the mechanism chooses a player at random.

For any player to authenticate, she must complete all three steps
successfully. This not only requires knowing the correct credentials but
also requires that all messages arrive before the mechanism decides.
However, even if the user sends the correct credentials, some of the
messages might be delayed, and as the mechanism must decide, it
might do so before receiving all messages. In this case, the mechanism
chooses a player at random, and the user might not authenticate.
Therefore, this mechanism’s profile is empty Π(𝑀ex) = ∅.

A dominating one-shot mechanism 𝑀ex
OS has the player send the

content of all three steps in a single message. The rest of the decision
process of themechanism stays the same. If the player sends the content
of all three steps in a single message, then she wins. Therefore, if the
user knows both credentials, she can authenticate. However, if the user
knows only one of the credentials, she cannot always authenticate.
And if the attacker knows at least one of the credentials, she can
authenticate in some cases (depending on the mechanism’s random
choice). Therefore, the mechanism’s profile is the scenario in which the
user knows both credentials and the attacker knows none Π(𝑀ex

OS) =
{((1, 1), (0, 0))} ⊃ Π(𝑀ex).

4.1.3 Credential-based mechanisms. A one-shot mechanism is a

credential-based mechanism if it reaches a decision based only on a

function of the credentials it receives from players.

Definition 9 (Credential-based mechanism). A mecha-
nism 𝑀 is a credential-based mechanism if it is a one-shot mecha-
nism and for all scenarios 𝜎 , schedulers 𝛾 and random tapes 𝑣 , and
for all user and attacker strategies 𝑆𝑈 , 𝑆′𝑈 , 𝑆𝐴 and 𝑆 ′

𝐴
such that 𝑆𝑈

and 𝑆𝐴 send only messages that are subsets of the corresponding
player’s credentials’ vector, and 𝑆 ′

𝑈
and 𝑆 ′

𝐴
send messages with the

same subsets of credentials but with any additional strings, then𝑀

reaches the same decision in both executions 𝐸1 = (𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣)
and 𝐸2 = (𝑀,𝜎, 𝑆 ′

𝑈
, 𝑆′

𝐴
, 𝛾, 𝑣).

Lemma 2. For all one-shot mechanisms 𝑀OS there exists a
credential-based mechanism𝑀cred that dominates𝑀OS.

The proof of Lemma 2 is similar to that of Proposition 1 and is

omitted for brevity. The key difference is the observation that any

message a player can send is a function of (1) common informa-

tion [25] available to everyone, (2) credentials of the sender, and

(3) random bits.

Denote by𝑀OS a one-shot mechanism. If a player has a winning

strategy for𝑀OS, knowing some common information, her creden-

tials, and the random bits, she can generate the messages she needs

to send to win in the credential-base mechanism as well.

Formally, we define a function 𝑆OS (·) that maps a set of cre-

dentials to a strategy. Let 𝑐 be a set of credentials known to

player 𝑖 ∈ {0, 1}, the function 𝑆OS (𝑐) returns a strategy for player 𝑖

for𝑀OS using 𝑐 such that if the first message that𝑀OS receives is

from player 𝑖 , it leads to player 𝑖 winning the execution. If no such

a strategy exists, 𝑆OS (𝑐) = ⊥. Then the construction of a credential-

based mechanism𝑀cred is similar to that of𝑀OS with the following

change: Instead of extracting the strategy and credentials from the

message,𝑀cred uses the function 𝑆OS (·) to obtain the strategy given

the credentials.

The mechanism 𝑀cred is credential-based as is one-shot and

decides based only on the credentials it receives.

Example 2. Following Example 1, a dominating credential-based
mechanism 𝑀ex

cred of 𝑀ex
OS has the player send only her password

and OTP in a single message. The rest of the decision process of the
mechanism remains the same. The pressing of “start”, which is not a
credential, is redundant.

In practice, the username is necessary to authenticate; however, it
is not a credential (not a secret.) For simplicity, we abstract it away
and assume the mechanism knows in advance which account the
authentication is for.

4.1.4 Deterministic mechanisms. Next, we show that in one-shot

mechanisms, using randomness to determine if a player is the user

or not, does not help the mechanism design.

Lemma 3. For all one-shot credential-based mechanisms 𝑀cred
there exists a deterministic credential-based mechanism 𝑀det that
dominates𝑀cred.

Denote by𝑀cred a credential-based authentication mechanism.

A deterministic mechanism𝑀det that behaves the same as𝑀cred ex-

cept that its step function does not use any randomness can be con-

structed by artificially replacing the randomness used in step𝑀cred
(·)

with a stream of zeroes. Thus, preventing𝑀det from using any ran-

domness in its step function and making it deterministic. Again, the

proof of Lemma 3 is similar to that of Proposition 1 and Lemma 2

and is omitted for brevity.

Example 3. Following Example 2, a dominating deterministic
credential-based mechanism 𝑀ex

det requires both the password and
the OTP in a single message. If a player sends the correct password
and OTP, then she wins. Otherwise, the other player wins (instead
of randomly choosing a winner). The profile of 𝑀ex

det is Π(𝑀
ex
det) =

{((1, 1), (0, 0)), ((1, 1), (1, 0)), ((1, 1), (0, 1))} ⊃ Π(𝑀ex
cred). That is,

all scenarios where both credentials are available to the user and not
to the attacker.

4.1.5 Boolean mechanisms. We show that every deterministic

credential-based mechanism is dominated by a mechanism defined

by a monotonic Boolean function.

Marwa Mouallem and Ittay Eyal

Definition 10 (Boolean mechanism). Given a Boolean func-
tion on 𝑛 variables 𝑓 : {0, 1}𝑛 → {0, 1}, we define the Boolean

mechanism 𝑀𝑓 as follows: The credential generation func-
tion gen𝑀𝑓

(·) is a secure credential generation function. The step
function step𝑀𝑓

(msg, 𝑖) receives a single message msg from a player
with identifier 𝑖 that contains a set of credentials 𝑐 . The mechanism𝑀𝑓

extracts the credentials’ availability vector 𝑞 from 𝑐 . If 𝑐 is not a valid
set of credentials,𝑀𝑓 decides the identifier of the other player 1 − 𝑖 .
If 𝑓 (𝑞) = 1, 𝑀𝑓 decides 𝑖 . Otherwise, 𝑓 (𝑞) = 0 and the mechanism
decides 1 − 𝑖 . The mechanism 𝑀𝑓 is the Boolean mechanism of 𝑓 .
If 𝑓 is monotonic, then 𝑀𝑓 is the monotonic Boolean mechanism

of 𝑓 .

Intuitively, for a deterministic credential-based mechanism, the

only information that matters is whether a player can prove she

has a set of credentials. If a player can authenticate to a mecha-

nism, accessing additional credentials will not prohibit her from

authenticating to the same mechanism.

Construction 2. Denote by𝑀det a deterministic credential-based
mechanism with 𝑛 credentials. Define 𝑓 : {0, 1}𝑛 → {0, 1} as follows:
For all 𝑞 ∈ {0, 1}𝑛 :

𝑓 (𝑞) =
{
1 𝑞 ∈ {𝜎𝑈 ∈ {0, 1}|∃𝜎 = (𝜎𝑈 , 𝜎𝐴) ∈ Π(𝑀det)}
0 otherwise

𝑓 is the function derived from 𝑀det. 𝑀𝑓 is the mechanism defined
by 𝑓 , with the function gen𝑀𝑓

(·) := gen𝑀det
(·). It is easy to see that 𝑓

is well-defined. It remains to show that it is monotonic and that it
dominates𝑀det.

Lemma 4. Let𝑀det be a deterministic credential-based mechanism
and let the function 𝑓 be as constructed above. Then 𝑓 is monotonic.

Proof. Given two binary vectors 𝑥,𝑦 ∈ {0, 1}𝑛 , we denote 𝑥 ≥ 𝑦

if for every index 𝑖 ∈ [𝑛], 𝑥𝑖 ≥ 𝑦𝑖 . In other words, if an element is

set to 1 in 𝑦, it is also set to 1 in 𝑥 .

We now prove that the function 𝑓 is monotonic. Let 𝑥,𝑦 ∈ {0, 1}𝑛
such that 𝑦 ≥ 𝑥 and 𝑓 (𝑥) = 1. By definition of 𝑓 , 𝑓 (𝑥) = 1 if and

only if there exists a scenario 𝜎 in which the user’s availability

vector is 𝑥 and 𝑀det succeeds in 𝜎 . Let 𝑆𝑈 be the winning user

strategy for𝑀det in 𝜎 .

As𝑀det is a credential-based mechanism, 𝑆𝑈 sends only a set of

credentials 𝑐𝑈 in a single message. Now consider the scenario 𝜎′

in which the user’s availability vector is 𝑦 and the attacker’s avail-

ability vector is the same as in 𝜎 . The user can use the exact same

strategy 𝑆𝑈 in 𝜎′, as she has access to all credentials she has in 𝜎

and more. Thus, for all attacker strategies 𝑆𝐴 , schedulers 𝛾 , and ran-

dom tapes 𝑣 , the user wins the execution 𝐸 = (𝑀det, 𝜎
′, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣).

Therefore, 𝑀det succeeds in 𝜎′ as well, 𝑓 (𝑦) = 1 and 𝑓 is mono-

tonic. □

To prove Lemma 4, we show that if 𝑀det is successful in a sce-

nario 𝜎 , then𝑀𝑓 is successful in 𝜎 as well. We build on the observa-

tion that based on the scheduler, an execution of𝑀𝑓 has 3 possible

paths: either (1)𝑀𝑓 receives no messages, thus it does not decide.

Or (2) the user’s message arrives first, with her set of credentials

corresponding to the availability vector 𝜎𝑈 . As𝑀det is successful

in 𝜎 , by definition of 𝑓 we get that 𝑓 (𝜎𝑈) = 1 and𝑀𝑓 decides the

user.

The last possibility is that (3) the attacker’s message arrives

first, if it is not a valid set of credentials, then𝑀𝑓 decides the user.

Otherwise, if it is a valid set of credentials, we show that it is not

possible that 𝑓 evaluates to 1 on the attacker’s availability vector.

The proof is somewhat similar to that of Lemma 1 and is done

by contradiction. If 𝑓 evaluates to 1 on the attacker’s availability

vector, then there exists two execution prefixes of 𝑀det that are

indistinguishable to the mechanism𝑀det and lead to the attacker

winning. In one of which the attacker wins, although the user uses

her winning strategy, contradicting the fact that𝑀det is successful

in 𝜎 . Thus,𝑀𝑓 decides the user. As in all cases, if a message arrives

to𝑀𝑓 , then𝑀𝑓 decides the user. We conclude that𝑀𝑓 , is a mono-

tonic Boolean mechanism that dominates𝑀det. The proof can be

found in Appendix C.

Example 4. Consider the deterministic credential-based mecha-
nism𝑀ex

det from Example 3. A dominating monotonic Boolean mecha-
nism𝑀ex

𝑓
is the mechanism defined by the function 𝑓 (𝑐1, 𝑐2) = 𝑐1∧𝑐2.

4.1.6 Any mechanism is dominated by a Boolean one. We now

show that every mechanism is dominated by a monotonic Boolean

mechanism.

Theorem 1. For all profiles 𝜋 , for all mechanisms 𝑀 that solve
the 𝜋-asynchronous authentication problem, there exists a monotonic
Boolean mechanism𝑀𝑓 that dominates𝑀 .

Proof. Let 𝜋 be a profile and let𝑀 be a mechanism that solves

the 𝜋 asynchronous authentication problem. By Proposition 1 there

exists a one-shot mechanism 𝑀OS dominating 𝑀 , from Lemma 2

there exists a credential-based mechanism𝑀cred dominating𝑀OS,

and by Lemma 3,𝑀cred is dominated by a deterministic credential-

based mechanism 𝑀det. Finally, by Lemma 4 there exists a mono-

tonic Boolean mechanism that dominates 𝑀det. Overall we get

that any mechanism is dominated by a monotonic Boolean mecha-

nism. □

Note that it is not true that for every mechanism there exists an

equivalent Boolean mechanism. We show an example of a mecha-

nism that has no equivalent Boolean mechanism.

Example 5. Consider the mechanism 𝑀ex
OS from Example 1. We

showed that, Π(𝑀ex
OS) = {((1, 1), (0, 0))}. However, there exists no

Boolean mechanism with the same profile. There are six monotonic
Boolean functions with two variables. Two of which are the con-
stant functions 𝑓1 (𝑣) = 0 and 𝑓2 (𝑣) = 1 for all 𝑣 ∈ {0, 1}2 and
one can easily confirm that their profiles are empty. The other four
functions are 𝑓3 (𝑐1, 𝑐2) = 𝑐1, 𝑓4 (𝑐1, 𝑐2) = 𝑐2, 𝑓5 (𝑐1, 𝑐2) = 𝑐1 ∨ 𝑐2,
and 𝑓6 (𝑐1, 𝑐2) = 𝑐1 ∧ 𝑐2. None of these functions has a profile that
includes only a single scenario.

4.2 Monotonic Boolean Mechanisms are
Maximal

We now prove that every non-trivial monotonic Boolean mech-

anism is maximal. First, we show that a Boolean mechanism is

successful in a scenario (𝜎𝑈 , 𝜎𝐴) if and only if the user has suf-

ficient credentials and the attacker does not, that is, 𝑓 (𝜎𝑈) = 1

and 𝑓 (𝜎𝐴) = 0. The proof can be found in Appendix D.

Asynchronous Authentication

Observation 1. Let𝑀𝑓 be a monotonic Boolean mechanism of
the function 𝑓 . Let 𝑇 = {𝑣 ∈ {0, 1}𝑛 | 𝑓 (𝑣) = 1} and let 𝐹 = {𝑣 ∈
{0, 1}𝑛 | 𝑓 (𝑣) = 0}. The profile of 𝑀𝑓 is the Cartesian product of 𝑇
and 𝐹 .

Π(𝑀𝑓) = {(𝜎𝑈 , 𝜎𝐴) ∈ {0, 1}𝑛 × {0, 1}𝑛 | 𝜎𝑈 ∈ 𝑇, 𝜎𝐴 ∈ 𝐹 }.

And the profile’s size is |Π(𝑀𝑓) | = |𝑇 | · |𝐹 |.

We intend to gradually build the mechanism’s function. To this

end, we recall the definition of a partially-defined Boolean function—

a function that defines output values for a subset of the Boolean

vectors.

Definition 11 (Partially-defined Boolean function). [9] A
partially-defined Boolean function (or partial Boolean function) is a
pair of disjoint sets (𝑇, 𝐹) of binary 𝑛-vectors. The set𝑇 denotes the set
of true vectors and 𝐹 denotes the set of false vectors. A Boolean function
𝑓 : {0, 1}𝑛 → {0, 1} is called an extension of (𝑇, 𝐹) if 𝑓 (𝑥) = 1 for
all 𝑥 ∈ 𝑇 and 𝑓 (𝑦) = 0 for all 𝑦 ∈ 𝐹 .

We extend the definition of a Boolean mechanism to a partial

Boolean mechanism.

Definition 12 (Partial Boolean mechanism). Given a
partial Boolean function on 𝑛 variables (𝑇, 𝐹), we define the
mechanism 𝑀(𝑇,𝐹) as follows: The credential generation func-
tion gen𝑀(𝑇 ,𝐹) (·) is a secure credential generation function. The step
function step𝑀(𝑇 ,𝐹) (msg, 𝑖) receives a single message msg from a
player with identifier 𝑖 that contains a set of credentials 𝑐 . The mech-
anism 𝑀(𝑇,𝐹) extracts the credentials’ availability vector 𝑞 from 𝑐 .
If 𝑐 is not a valid set of credentials, 𝑀(𝑇,𝐹) decides the identifier of
the other player 1 − 𝑖 . If 𝑞 ∈ 𝑇 , the mechanism𝑀(𝑇,𝐹) decides 𝑖 . And
if 𝑞 ∈ 𝐹 , the mechanism decides 1 − 𝑖 . Otherwise, 𝑞 ∉ 𝑇 ∪ 𝐹 , and the
step function of𝑀(𝑇,𝐹) does nothing.𝑀(𝑇,𝐹) is the partial Boolean
mechanism of (𝑇, 𝐹).

Note 5. Similar to Observation 1, the profile of a partial Boolean
mechanism of (𝑇, 𝐹) is the set of all scenarios in which the user’s
availability vector is in 𝑇 and the attacker’s is in 𝐹 .

We define a monotonic partial Boolean function as follows:

Definition 13 (Monotonic partial Boolean function). A
monotonic partial Boolean function is a partial Boolean function
that has a monotonic extension.

For example, in Example 1, themechanism𝑀ex
OS is themechanism

of the tuple (𝑇, 𝐹) where 𝑇 = {(1, 1)} and 𝐹 = {(0, 0)}. This is a
monotonic partial Boolean function, as the function 𝑓 (𝑥,𝑦) = 𝑥 ∧𝑦
is a monotonic extension of (𝑇, 𝐹).

To prove we can indeed extend a partial Boolean function, we

make use of the following observation. We show that if a mech-

anism 𝑀1 dominates 𝑀2 then the set of user availability vectors

in Π(𝑀1) is a subset of the set of user availability vectors in Π(𝑀2),
and the same holds for the attacker availability vectors.

Observation 2. Let 𝑀1 and 𝑀2 be two mechanisms such
that ∅ ≠ Π(𝑀1) ⊆ Π(𝑀2). Let 𝑇1 and 𝑇2 be the sets of all user avail-
ability vectors and 𝐹1 and 𝐹2 be the sets of all attacker availability
vectors in Π(𝑀1) and Π(𝑀2) respectively. Then,𝑇1 ⊆ 𝑇2 and 𝐹1 ⊆ 𝐹2.

For example, the mechanisms𝑀1 = 𝑀ex
OS from Example 1, and the

mechanism𝑀2 that requires only the first credential to authenticate,

both have non-empty profiles, and Π(𝑀1) ⊆ Π(𝑀2). Then 𝑇1 =

{(1, 1)}, 𝑇2 = {(1, 1), (1, 0)}, 𝐹1 = {(0, 0)} and 𝐹2 = {(0, 0), (0, 1)}.
And it holds that 𝑇1 ⊆ 𝑇2 and 𝐹1 ⊆ 𝐹2.

We now show that everymechanism is equivalent to amonotonic

partial Boolean one.

Lemma 5. For all mechanisms, there exists an equivalent mono-
tonic partial Boolean mechanism.

Both proofs of Observation 2 and Lemma 5 can be found in

Appendix E. Now we show that every maximal mechanism is equiv-

alent to a Boolean mechanism.

Theorem 2. For all monotonic Boolean mechanisms of non-
constant functions, there exists no strictly dominating mechanism.

Proof. Let 𝑓 be a non-constant monotonic Boolean func-

tion,𝑀𝑓 the mechanism defined by 𝑓 , and𝑀′ a mechanism domi-

nating𝑀𝑓 . We show that Π(𝑀𝑓) = Π(𝑀′).
By Lemma 5, there exists a monotonic partial Boolean mech-

anism equivalent to 𝑀′. Let (𝑇 ′, 𝐹 ′) be the partial Boolean func-

tion defining 𝑀′. And let 𝑇 be the set of all user availability vec-

tors in Π(𝑀𝑓) and 𝐹 be the set of all attacker availability vectors

in Π(𝑀𝑓).
First, we show that the profile of 𝑀𝑓 is not empty. As 𝑓 is

non-constant, there exists a vector 𝑞 such that 𝑓 (𝑞) = 1 and

a vector 𝑞′ such that 𝑓 (𝑞′) = 0. Consider the scenario 𝜎 such

that 𝜎𝑈 = 𝑞 and 𝜎𝐴 = 𝑞′. Then, from Observation 1, 𝜎 ∈ Π(𝑀𝑓),
and thus Π(𝑀𝑓) ≠ ∅.

Then, as Π(𝑀𝑓) ⊆ Π(𝑀′), from Observation 2, we get

that 𝑇 ⊆ 𝑇 ′ and 𝐹 ⊆ 𝐹 ′. However, as 𝑓 is a Boolean func-

tion, 𝑇 ∪ 𝐹 = {0, 1}𝑛 and 𝑇 ∩ 𝐹 = ∅. Therefore, 𝑇 = 𝑇 ′ and 𝐹 = 𝐹 ′.
And thus, Π(𝑀𝑓) = Π(𝑀′). □

Finally, we prove that there exists no hierarchy between mono-

tonic Boolean mechanisms of non-constant functions.

Lemma 6. Let 𝑓 , 𝑔 : {0, 1}𝑛 → {0, 1} be two different non-constant
monotonic Boolean functions. Denote by𝑀𝑓 and𝑀𝑔 the monotonic
Boolean mechanisms of 𝑓 and 𝑔 respectively. If 𝑓 or 𝑔 is not constant,
then Π(𝑀𝑓) ≠ Π(𝑀𝑔).

Proof. Let 𝑓 , 𝑔 : {0, 1}𝑛 → {0, 1} be two different mono-

tonic Boolean functions. There exists a vector 𝑣 ∈ {0, 1}𝑛 such

that 𝑓 (𝑣) ≠ 𝑔(𝑣). Assume without loss of generality that 𝑓 (𝑣) = 1

and 𝑔(𝑣) = 0. As both functions are non-constant, there ex-

ists a vector 𝑢 ∈ {0, 1}𝑛 such that 𝑓 (𝑢) = 0. Consider the sce-

nario 𝜎 = (𝑣,𝑢). We have 𝑓 (𝑣) = 1 and 𝑓 (𝑢) = 0, and thus 𝜎 ∈
Π(𝑀𝑓). We also have 𝑔(𝑣) = 0, and thus 𝜎 ∉ Π(𝑀𝑔). There-
fore, Π(𝑀𝑓) ≠ Π(𝑀𝑔). □

Overall, we showed that for every mechanism that solves the 𝜋

asynchronous authentication problem, there exists a partial Boolean

function that defines it. And there exists a monotonic Booleanmech-

anism that dominates it. In addition, every monotonic Boolean

mechanism of a non-constant function is maximal. Thus conclud-

ing that every twomonotonic Boolean mechanisms of non-constant

functions are either equivalent or incomparable. This shows that in

Marwa Mouallem and Ittay Eyal

contrast to the synchronous model [35], there exists no probability-

agnostic hierarchy between maximal mechanisms in the asynchro-

nous model.

5 PROBABILISTIC ANALYSIS
Using the properties we found of maximal mechanisms, we present

an efficient method for finding mechanisms with approximately

maximal success probability.

5.1 Preliminaries
As in previous work [18], we derive the probability of scenarios

from the credentials’ fault probability. Each credential 𝑐𝑖 can be in

one of the four states, (1) safe: Only available to the user, (2) loss:
Not available to either player, (3) leak: Available to both players, or

(4) theft: Available only to the attacker. Its 𝑐𝑆
𝑖
is available to each

player accordingly by the scheduler.

Each credential has a probability of being in each of the four

states. For example, a complex password that the user memorized

has a low probability of being leaked (guessed) but a high prob-

ability of being lost (forgotten). While a simple password has a

high probability of being leaked but a low probability of being lost.

The states of the different credentials are determined by a proba-

bility space specified by independent probabilities of each of the

credentials. The probabilities of a credential 𝑐𝑖 being in each of the

four states are denoted by 𝑃
safe
𝑖

, 𝑃 loss
𝑖

, 𝑃 leak
𝑖

, and 𝑃
theft
𝑖

, respectively,

𝑃
safe
𝑖
+𝑃 loss

𝑖
+𝑃 leak

𝑖
+𝑃 theft

𝑖
= 1. We assume the mechanism designer

estimates the fault probabilities of the credential. But note that this

is always the case, even if done implicitly.

The probability of a scenario given the probability vector tu-

ple of each credential is the product of the probabilities of each

credential being in the state it is in the scenario. Let 𝑀𝑓 be the

Boolean mechanism of the function 𝑓 . The success probability

of𝑀𝑓 is the sum of the probabilities of all scenarios in which𝑀𝑓

is successful, denoted by 𝑃 suc (𝑀𝑓), and the failure probability is

its complement 𝑃 fail (𝑀𝑓) = 1 − 𝑃 suc (𝑀𝑓). A mechanism is better
than another if its success probability is higher.

The relation between credentials’ fault probabilities and the

success probability of a mechanism is not straightforward. For

example, consider two credentials 𝑐1 and 𝑐2. Assume both creden-

tials are prone to loss but not to leakage, with fault probabilities

of 𝑃 loss
1

= 𝑃 loss
2

= 0.1 and 𝑃
safe
1

= 𝑃
safe
2

= 0.9. Then using both

credentials in an OR mechanism, where either credential is suf-

ficient for authentication, results in a success probability of 0.99.

While using a single credential results in a success probability of 0.9.

Therefore, in this case, using both credentials increases the success

probability of the mechanism. However, this is not true in general.

For example, assume one credential is prone to loss with a fault

probability of 𝑃 loss
1

= 0.1 and 𝑃
safe
1

= 0.9 and the other is prone to

leakage with 𝑃 leak
2

= 0.1 and 𝑃
safe
2

= 0.9. Then using both creden-

tials in an OR mechanism results in a success probability of 0.9.

Moreover, any Boolean mechanism using one or both credentials

has the same success probability of 0.9. Therefore, in this case, us-

ing two credentials does not increase the success probability of the

mechanism compared to using a single credential.

(a) 𝑛 = 9: 𝑃 loss
1

= 𝑃 leak
1

= 0.01,
for 𝑖 > 1 𝑃

theft
𝑖

= 0.01.
(b) 𝑛 = 7 with 𝑃 loss = 0.05, 𝑃 leak =

0.03, 𝑃 theft = 0.01.

Figure 1: Probability of scenarios for 𝑛 credentials and differ-
ent probabilities.

5.2 Profiles and Scenarios
Given the number of credentials 𝑛 and the probabilities of states,

our goal is to find a mechanism with the highest success probabil-

ity. Using exhaustive search over the space of all possible mecha-

nisms (equivalently, all monotonic Boolean functions) is infeasible

for more than just a few credentials [18]. The number of differ-

ent Boolean functions with 𝑛 credentials is the Dedekind number

of 𝑛 [15] which grows super-exponentially and is only known up

to 𝑛 = 9 [27]. Therefore, we aim to choose a mechanism that is

close to optimal while exploring only a small fraction of the space

of all mechanisms. We achieve this by searching by scenarios.

First, we show that there is no need to consider scenarios with

no safe credentials.

Definition 14 (Viable scenarios). A viable scenario 𝜎 is a
scenario in which there exists at least one safe credential. A scenario
is non-viable if it is not viable. That is, 𝜎𝑈 ≤ 𝜎𝐴 .

Maram et al. [35] showed that in the synchronous model, a non-

viable scenario is not in the profile of any mechanism. As their

model is stronger (has additional assumption on the network), this

is also true in our asynchronous model. We also use their following

observation.

Observation 3. The number of viable scenarios for 𝑛 credentials
is 4𝑛 − 3𝑛 .

Now we bound the number of scenarios that can be added to

any partial Boolean mechanism’s profile.

Observation 4. Let (𝑇, 𝐹) be a partial Boolean function of 𝑛
credentials. Let 𝑠 = 𝑚𝑎𝑥 (|𝑇 |, |𝐹 |). The maximum number of sce-
narios that can be added to the profile of the mechanism 𝑀(𝑇,𝐹)
without contradicting it is 𝑠 · (2𝑛 − 𝑠) − |Π(𝑀(𝑇,𝐹)) | if 𝑠 ≥ 2

𝑛−1

and 4𝑛 − 3𝑛 − |Π(𝑀(𝑇,𝐹)) | otherwise.

Both proofs of Observation 3 and Observation 4 are in Appen-

dix F.

To maximize success probability, we limit our search to mech-

anisms defined by monotonic Boolean functions. We are only in-

terested in credentials with low fault probabilities. Intuitively, sce-

narios with fewer faults have higher probabilities than those with

more faults. So the probability distribution of viable scenarios is

highly concentrated on a small number of scenarios. And when

some fault probabilities are 0, the number of scenarios with non-

zero probability drops even further. Thus, the number of scenarios

Asynchronous Authentication

Algorithm 2: Scenario-based search algorithm

viableScenarios: List of all viable scenarios, sorted by probability in descending order,

calculated based on the fault probabilities of the credentials.

maxSuccessProb← 0 // maximal success probability found so far

maxTable← truth table where the all zeroes row is set to 0, the all ones row is set to 1,

and the rest is set to ⊥ // truth table with the maximal success probability found so far

𝛿 : The precision parameter chosen by the user.

scenarioBasedSearch(truthTable, idx)
/* Input: truthTable- a (possibly partial) monotonic truth table of a mechanism. */

/* Input: idx is the index of the next scenario to consider. */

/* Output: No returned value. The function updates maxSuccessProb and maxTable. */

1 currProfile← truthTable’s profile, calculated as described in Note 5

2 successProb← success probability of currProfile
3 if truthTable is complete then
4 if successProb > maxSuccessProb then
5 maxSuccessProb← successProb
6 maxTable← truthTable
7 return
8 possibleScenariosProbabilitiesSorted← sorted array of scenarios probability that can be

added to truthTable and whose index in viableScenarios is higher than idx
9 numPossibleAdditions← maximum number of scenarios that can be added to truthTable

given the table as calculated in Observation 4

10 maxAdditionalProb← ∑numPossibleAdditions
𝑖=1

possibleScenariosProbabilitiesSorted(𝑖)
11 if maxAdditionalProb = 0 then // additional scenarios will add 0 to the success probability

12 truthTable← arbitrarily complete truthTable
13 if successProb > maxSuccessProb then
14 maxSuccessProb← successProb
15 maxTable← truthTable
16 return
17 potentialSuccessProb← successProb + maxAdditionalProb // upper bound on success

probability

18 if maxSuccessProb > 0 and maxSuccessProb > potentialSuccessProb − 𝛿 then
19 return // cannot exceed by over 𝛿 , prune this branch

20 𝜎 ← viableScenarios(idx) // get next scenario

21 prevUserVal = truthTable (𝜎𝑈) // save previous values

22 prevAttVal = truthTable (𝜎𝐴)

23 if (prevUserVal ≠ 0 and prevAttVal ≠ 1) and (prevUserVal = ⊥ or prevAttVal = ⊥) then
24 newTable← updateTable(truthTable, 𝜎) // update table with 𝜎 and keep it monotonic

25 scenarioBasedSearch(newTable, idx + 1) // recursive call with the new scenario

26 scenarioBasedSearch(truthTable, idx + 1) // recursive call without the new scenario

that our algorithm needs to consider is much smaller than the total

number of scenarios. For example, Figure 1a shows the probabil-

ity distribution of the scenarios for a system with 9 credentials

where the first credential might be lost or leaked with probabil-

ity 𝑃 loss
𝑖

= 𝑃 leak
𝑖

= 0.01 and the rest of the credentialsmight be stolen

with probability 𝑃
theft
𝑖

= 0.01. The number of scenarios with 9 cre-

dentials is 4
9 = 262,144 with 242,461 viable scenarios, but only 766

have non-zero probability. Similarly, Figure 1b shows the probability

distribution of the scenarios for a system with 7 credentials where

all fault types are possible with probability 𝑃 loss
𝑖

= 0.05, 𝑃 leak
𝑖

= 0.03,

and 𝑃
theft
𝑖

= 0.01 for all credentials. The number of different scenar-

ios with 7 credentials is 4
7 = 16,384, out of which 14,197 are viable

scenarios with positive probability. Yet, over 91% of the probabil-

ity is concentrated in the first 50 scenarios and over 95% on the

first 100 scenarios. Other fault probabilities result in qualitatively

similar results. While this case demonstrates a more challenging

situation, it still shows that the significant part of the probability is

concentrated on a small number of scenarios. Thus, when searching

for near-optimal mechanisms, we can neglect the vast majority of

scenarios.

5.3 Scenario-Based Search Algorithm
Given a positive fraction 𝛿 ∈ N+, our scenario-based search algo-

rithm (Algorithm 2) finds a mechanism whose success probability is

at most 𝛿 below that of an optimal mechanism. It takes advantage of

three key observations: (1) The number of scenarios that might be

added to a profile of a partial Boolean mechanism is bounded (Ob-

servation 4); (2) non-viable scenarios can be ignored [35]; and (3)

the probability of different scenarios drops quickly (Figure 1).

Instead of searching all possible mechanisms to find the optimal

one, we build the truth table (and thus mechanism) incrementally:

Given the number of credentials 𝑛, we start with the empty partial

truth table of 𝑛 variables of the function (total of 2
𝑛
rows) and add

rows. By Lemma 5, for all mechanisms𝑀 there exists a monotonic

partial Boolean function (𝑇, 𝐹) such that 𝑀 is equivalent to the

mechanism defined by (𝑇, 𝐹). The monotonic partial truth table

corresponding to (𝑇, 𝐹) has the value 1 for all vectors in 𝑇 , 0 for
all vectors in 𝐹 , and the rest of the vectors 𝑣 ∉ 𝑇 ∪ 𝐹 are not set

yet (denoted by ⊥). Changing a value of a row in the truth table

from ⊥ to 0 is equivalent to adding the vector to 𝐹 and changing a

value from ⊥ to 1 is equivalent to adding the vector to 𝑇 .

By Theorem 1 every mechanism is dominated by a Boolean

mechanism. Because every maximal mechanism is a monotonic

Boolean mechanism (Theorem 2), and every monotonic Boolean

function yields a maximal mechanism (Lemma 6), we extend the

monotonic partial Boolean function that defines the mechanism

until it is full (representing a Boolean function).

Note that if the value of the all zeroes row is set to 1 in the truth

table, from monotonicity, we get the constant function 𝑓 (𝑥) = 1: As

for all 𝑥 ∈ {0, 1}𝑛 we have that 𝑥 ≥ 0
𝑛
, then to ensure monotonicity,

we must set 𝑓 (𝑥) = 1 for all 𝑥 ∈ {0, 1}𝑛 . Similarly, if the value of

the all ones row is set to 0, we get the constant function 𝑓 (𝑥) = 0.

It is easy to confirm that the profile of a Boolean mechanism

of a constant function is empty: Let 𝑀F and 𝑀T be the mecha-

nisms defined by the constant Boolean functions ∀𝑣, F(𝑣) = 0,

and T(𝑣) = 1. Let 𝜎 = (𝜎𝑈 , 𝜎𝐴) be a scenario. Because ∀𝑣, F(𝑣) = 0,

we get that F(𝜎𝑈) ∧ ¬F(𝜎𝐴) = 0, thus 𝑀F fails. Similarly, we

have T(𝜎𝑈) ∧ ¬T(𝜎𝐴) = 0. Therefore, both mechanisms have

empty profile. So we consider only non-constant monotonic

Boolean functions and set the value of the all zeroes row to 0 and

the value of the all ones row to 1.

Equipped with these insights, we are ready to present the

scenario-based search (Algorithm 2). Given the credentials’ proba-

bility vectors, we calculate the probability of each viable scenario,

sort it and save it in a global variable viableScenarios. Then we

progress greedily, from scenarios with the highest to the low-

est probabilities. For each scenario, there are two options: either

include it in the profile or not. We refer to truthTable as a dic-

tionary mapping an availability vector to 0, 1, or ⊥. We denote

by truthTable(𝜎𝑈) and truthTable(𝜎𝐴) the value of the user and

the attacker’s availability vectors 𝜎𝑈 and 𝜎𝐴 in truthTable respec-
tively. Similarly, we denote by viableScenarios(idx) the scenario at

index idx in the sorted list of viable scenarios.

In each step, the algorithm computes the success probability

of the current partial truth table (lines 1-2). It then checks if the

truth table is full (line 3). If so, it means we reached a Boolean

function that cannot be extended. The algorithm checks if the

success probability of the mechanism (truth table) is higher than the

best found so far (line 4). If so, it updates the best success probability

and the corresponding global best truth table (lines 5-6), then it

returns.

Otherwise, the table can be extended. The algorithm checks if

it can add any scenarios with positive probability to the current

Marwa Mouallem and Ittay Eyal

truth table (line 11). If not, then any additional scenarios would con-

tribute 0 to the success probability, regardless of the exact scenarios

chosen. Thus, it completes the truth table arbitrarily by iteratively

adding scenarios from those left (with a higher index than idx in
viableScenarios) while making sure the result is monotonic (line 12),

checks if the success probability of the resulting mechanism is

higher than the global best found so far (line 13), and updates the

global best success probability and the corresponding global best

truth table accordingly (lines 14-15), then it returns. Note that this

covers the case where no scenarios are left to add.

Then, the algorithm checks if it is beneficial to continue extend-

ing the current table. It does so by finding an upper bound on the

additional success probability for the current branch by consider-

ing the next numPossibleAdditions scenarios in the sorted list and

summing their probabilities (line 10) where numPossibleAdditions
(line 9) is the maximum number of scenarios that may be added to

the current truth table without contradicting it (Observation 4). If

the potential best solution is not better by at least 𝛿 than the current

best (line 18), we prune this branch and do not consider any of the

mechanisms it results in (line 19). This takes advantage of the fact

that the probability of different scenarios drops exponentially fast

(Figures 1a and 1b) and is a key step in ensuring the algorithm’s

efficiency.

If none of the stop conditions hold, the algorithm continues by

exploring the next scenario (line 20). For the recursive exploration,

given a scenario, we have two options: (1) Include the scenario in

the truth table and recursively call the algorithm (only if it does

not contradict the current truth table and is not already in the

profile) (line 25). Or (2) Exclude this scenario and recursively call

the algorithm with the next scenario (line 26).

Given a scenario 𝜎 and a partially filled truth table, we check

whether the scenario contradicts the truth table and whether it is

already in the profile (line 23). We do so by checking if the value of

the user’s availability vector 𝜎𝑈 is not set to 0 (either 1 or⊥) and the
value of the attacker’s availability vector 𝜎𝐴 is not set to 1 (either 0

or ⊥). If so, the scenario does not contradict the truth table. And

checking that either the user’s availability vector or the attacker’s

availability vector is not set yet (has a value ⊥). If so, then it is not

in the profile. If both conditions hold, we include the scenario in

the truth table and recursively call the algorithm (line 25).

To include a scenario 𝜎 in the profile, we create an updated

truth table using the function updateTable(truthTable, 𝜎) (line 24).
The function sets the entry corresponding to 𝜎𝑈 to 1 and the

entry 𝜎𝐴 to 0. Then, to have the truth table represent a mono-

tonic Boolean function, updateTable(·) updates it by setting all

the entries 𝑥 ∈ {0, 1}𝑛 such that 𝑥 > 𝜎𝑈 to 1. And setting all en-

tries 𝑦 ∈ {0, 1} such that 𝑦 < 𝜎𝐴 to 0.

The algorithm’s result is the mechanism saved in the maxTable
and the corresponding success probability maxSuccessProb.

5.4 Algorithm Correctness
We now show that our scenario-based search (Algorithm 2) finds

a mechanism that is 𝛿 close to the optimal mechanism. First, we

note that after each update to the partial monotonic truth table,

it remains a (possibly partial) monotonic truth table—the above

update does not contradict previous ones (Appendix G.1). Next, we

Figure 2: Failure probability vs. credentials number. Compar-
ing our algorithm to previous methods: exhaustive search,
genetic algorithm, and guessing a symmetric mechanism.

show that the algorithm always stops and that when it returns, the

truth table contains a valid complete monotonic truth table whose

success probability is at most 𝛿 less than the optimal mechanism.

The algorithm explores adding scenarios to the truth table incre-

mentally, in the worst case it may explore all viable scenarios. As the

number of viable scenarios is finite and bounded (Observation 3),

the algorithm always stops.

The algorithm stops only when one of the three stopping con-

ditions is met. In the first case (line 3), the truth table is complete,

and the algorithm updates maxTable to this complete table. In the

second case (line 11), the algorithm finds that all scenarios that can

be added to the current truth table will not improve the success

probability. So it completes the truth table arbitrarily, andmaxTable
gets the completed table. Finally, in the third case (line 18), any pos-

sible additions do not result in a mechanism that is at least 𝛿 better

so the algorithm prunes the branch and returns, without updating

maxTable. However, this condition is met only ifmaxSuccessProb is
greater than 0 i.e., if the algorithm found a solution earlier. There-

fore, the algorithm must update a full truth table at least once, and

it is always a valid monotonic truth table that has a success proba-

bility at most 𝛿 less than the optimal mechanism. The proof is in

Appendix G.1.

5.5 Algorithm Complexity
We first present an upper bound on the complexity of the algorithm,

followed by a discussion of when and why the actual complexity

is much lower. Then we evaluate the complexity of the algorithm

empirically (§5.5.2), by measuring the runtime of our algorithm for

different numbers of credentials and fault probabilities.

5.5.1 Bound. To give a loose upper bound on the algorithm’s time

complexity, we note that each recursive call’s complexity is bounded

by 𝑂 ((4𝑛 − 3
𝑛) · 𝑛). And in the worst case, the recursion depth

reaches𝑂 (24𝑛−3𝑛). The overall bound is thus𝑂 (24𝑛−3𝑛 ·(4𝑛−3𝑛)·𝑛).
We defer a detailed analysis to Appendix G.2.1.

This analysis assumes the worst case for every step of the algo-

rithm. However, in practice, many steps’ worst case cannot happen

simultaneously. Thus, the actual complexity of the algorithm is

much lower, depending on the number of credentials, their proba-

bilities, and the parameter 𝛿 .

For example, while an upper bound on the recursion depth is

given by 2 to the power of the number of viable scenarios, the actual

depth explored is much smaller. This is due to multiple factors, for

example (1) the exponential drop in the probability of different sce-

narios, combined with the fact that the algorithm prunes branches

with negligible advantage; (2) the fact that the number of scenarios

Asynchronous Authentication

that can be added to a profile of a partial Boolean mechanism is

limited (Observation 4) in a non-trivial way depending on which do

result in a monotonic mechanism; and (3) each scenario adds not a

single row to the truth table, but possibly many rows for keeping

monotonicity (depending on the specific scenario and the current

truth table). While all those factors contribute to the algorithm’s

efficiency, it remains an open question whether the algorithm’s

exact complexity can be calculated theoretically (cf. the lack of

a closed form expression for the number of monotinic Boolean

functions [15]).

5.5.2 Empirical Complexity. As the problem of finding the exact

complexity of the algorithm remains open, we evaluate the algo-

rithm’s complexity by measuring its runtime as a function of the

number of credentials and their different fault probabilities. Fig-

ure 3 shows the runtime of the algorithm for different numbers of

credentials and fault probabilities using a logarithmic Y scale.

We consider two different categories of results: One where the

algorithm’s runtime grows exponentially with the number of cre-

dentials, and one where it grows super-exponentially.

Exponential Growth: When one credential can suffer from up

to a single type of fault and the rest can have up to two types of

faults, or when all credentials can suffer from all types of faults

with low probability, the algorithm’s runtime grows exponentially

(𝑂 (4𝑛)) with the number of credentials (all fits with𝑅2 > 0.97, exact

values are in Appendix G.2.2). For example, when all credentials

can suffer from loss with 𝑃 loss = 0.01, 𝑃 leak = 𝑃 theft = 0 (only loss in
Figure 3), or when 2 credentials can be easily lost, but not leaked or

stolen, with 𝑖 ∈ {1, 2}, 𝑃 loss
𝑖

= 0.3, 𝑃 leak
𝑖

= 𝑃
theft
𝑖

= 0 and the rest can

be either lost or leaked with 𝑗 > 2, 𝑃 loss
𝑗

= 𝑃 leak
𝑗

= 0.01, 𝑃
theft
𝑗

= 0.

(2 easily-to-lose in Figure 3).

We observe a similar trend when each credential can have all

three types of faults, where at least two with low fault probabilities,

𝑃 loss = 0.01, 𝑃 leak = 𝑃 theft = 0.001 (loss, leak, theft in Figure 3).

In all such cases, our scenario-based search runtime grows expo-

nentially slower (better) than the exhaustive search which requires

at least𝑂 (𝐷 (𝑛) ·4𝑛) operations, where𝐷 (𝑛) is the number of mono-

tonic Boolean functions of𝑛 variables. Notice that this improvement

was crucial for enabling the forthcoming case studies.

Super-Exponential Growth: But in some cases complexity is

worse. When all credentials can suffer from two or more types of

faults with a high probability, the algorithm’s runtime grows super-

exponentially with the number of credentials. E.g., if all three fault

types have high probabilities, say, 𝑃 loss = 0.1, 𝑃 leak = 0.3, 𝑃 theft =

0.4, the algorithm’s runtime grows too rapidly to obtain sufficient

data points for regression analysis.

5.6 Case Studies
The algorithm allows designers to choose approximately-optimal

mechanisms given their credentials’ fault probabilities. As the ac-

tual fault probabilities of credentials are application-specific and

not publicly available, a user or a company can use the algorithm

to find the best mechanism for their actual case. The ability to

study mechanisms with a larger number of credentials compared

to previous work allows taking advantage of elaborate schemes.

Our focus is on providing a tool for finding approximately-optimal

Figure 3: Runtime of the algorithm as a function of the
number of credentials for different fault probabilities with
𝛿 = 10

−5.

mechanisms rather than on specific mechanisms. We use concrete

values to evaluate the algorithm’s efficacy and accuracy (§5.6.1) and

propose improvements for cryptocurrency wallets (§5.6.2) and for

online authentication (§5.6.3).

5.6.1 Algorithm evaluation: We demonstrate the efficacy and ac-

curacy of our method by comparing the results to the optimal

mechanisms found using exhaustive search, a heuristic genetic al-

gorithm [18], and guessing a symmetric 𝑘/𝑛 mechanism [18]. As

expected, the number of credentials has a major effect on wallet

security. Figure 2 shows the security of the optimal mechanism

for different numbers of credentials when the first credential can

be lost or leaked, but not stolen (𝑃 loss = 𝑃 leak = 0.01), and the

rest of the credentials can only be stolen (𝑃 theft = 0.01). We use

a parameter 𝛿 ranging from 10
−5

for smaller numbers of creden-

tials to 10
−6

for larger numbers. Our algorithm efficiently finds the

same optimal mechanism as the exhaustive search and is able to

find an approximately optimal mechanism for up to 12 credentials.

In several cases, it finds better mechanisms than the ones found

by guessing a symmetric mechanism, e.g., Figure 2 with 6 or 8

credentials.

5.6.2 Cryptocurrency wallets. Typically, cryptocurrency wallets

use a single private key or mnemonic [14, 38] or multiple such

credentials with so-called multisig wallets or using threshold signa-

tures [12, 55], e.g., 2 out of 2 or 2 out of 3. These mechanisms rely

on users’ ability to securely store their credentials, and thus require

low credential fault probabilities. While increasing the number of

strong keys improves security [18], storing strong keys is challeng-

ing [6, 34]. However, it is possibly easier to store credentials with

high loss probability, e.g., a hard password committed to memory

that the user might forget but is hard to guess.

By exploring the larger design space with many credentials,

we find wallets can take advantage of weak credentials to improve

security. For example, in the case of a 2/2 multisig mechanism, using

two additional weak credentials reduces the failure probability by an

order ofmagnitude from 2·10−2 to 6·10−3. Figure 4 shows the failure
probability for different numbers of credentials when all credentials

can be lost or leaked, but not stolen (𝑃 loss = 𝑃 leak = 0.01), compared

to the security when using the same credentials but adding weak

credentials that can only be lost with higher probability (𝑃 loss = 0.3).

Here we used the parameter 𝛿 = 10
−6

. To the best of our knowledge,

there are no public user studies or statistics on credential fault

probabilities. However, we considered different combinations of

possible fault probabilities. The results are qualitatively similar. We

find that for 𝑛 regular credentials and 𝑘 easy-to-lose credentials, the

Marwa Mouallem and Ittay Eyal

Figure 4: Failure probability harnessing easy-to-lose creden-
tials. Weak: 𝑃 leak = 0, 𝑃 loss = 0.3, regular: 𝑃 leak = 𝑃 loss = 0.01.

Figure 5: Failure probability harnessing easy-to-leak creden-
tials. Weak: 𝑃 leak = 0.3, 𝑃 loss = 0, regular: 𝑃 leak = 𝑃 loss = 0.01.

optimal mechanism design is to require any of the 𝑘 easy-to-lose

credentials or any ⌊𝑛/2⌋ + 1 of the 𝑛 regular credentials.

5.6.3 Security questions. Until a few years ago, large email

providers like Google, Microsoft, and Yahoo! employed security

questions (like “name of first pet”) for password reset in online

services [6]. But using security questions in this simple manner fa-

mously reduces security [45, 51]. The monotonic Boolean function

representing such a mechanism is: require all answers to the secu-

rity questions or the password. Or in general, require all answers to

the security questions or any 𝑘 out of 𝑛 of the regular credentials

(e.g., password, fingerprint, or SMS code). We call this the classical

mechanism.

The main issue is that the answers to the security questions are

often easy to guess or to find online, that is, they are easy-to-leak

credentials. This implies that, with a fairly high probability, an

attacker can gain access to the account by answering the security

questions. And, indeed, most online services have stopped using

security questions [8] (with a few exceptions, e.g., [4, 29]).

Perhaps surprisingly, we find that a well-designed mechanism

can actually take advantage of easy-to-leak credentials. We used the

algorithm to find an approximately optimal mechanism and com-

pared it against the classical mechanism. Figure 5 shows the failure

probability of the mechanism for different numbers of credentials

when all credentials can be lost or leaked (𝑃 loss = 𝑃 leak = 0.01), com-

pared to the security when using the same credentials but adding

weak credentials that can only be leaked with higher probability

(𝑃 leak = 0.3). Just two easy-to-leak keys reduce the failure prob-

ability by about an order of magnitude. Again, we experimented

with different combinations of possible fault probabilities and the

results were qualitatively similar. The resultant mechanism requires

answering the security questions in addition to having any ⌈𝑛/2⌉
out of the 𝑛 regular credentials.

6 CONCLUSION
We formalize the common asynchronous authentication problem,

reconciling the apparent tension between asynchrony and cryp-

tographic security. We show every mechanism is dominated by

a non-trivial monotonic Boolean mechanism, which itself is not

strictly dominated. So in every pair of distinct such mechanisms,

neither strictly dominates the other. We present a practical algo-

rithm for finding approximately optimal mechanisms, given the

credential fault probabilities. This highlights the need for user stud-

ies to quantify those probabilities.

Our algorithm reveals surprising results; Accurately incorporat-

ing weak credentials improves mechanisms’ security by orders of

magnitude. One case study shows that a user designing her cryp-

tocurrency wallet can benefit from incorporating with her carefully-

guarded credentials a few additional ones that are perhaps easy to

lose. This is achieved by a mechanism that requires any of the easy-

to-lose credentials or any ⌊𝑛/2⌋ + 1 out of the 𝑛 regular credentials.

Another case study shows that using security questions (that are

easy-to-leak) in addition to regular credentials can significantly

improve security if used wisely, by requiring any ⌈𝑛/2⌉ out of the 𝑛
regular credentials and the answers to the security questions. More

generally, both individuals and companies can use these results

directly to rigorously design authentication mechanisms addressing

the demands of current and forthcoming challenges.

ACKNOWLEDGMENTS
This work was supported in part by Avalanche Foundation and by

IC3.

REFERENCES
[1] Kumar Abhishek, Sahana Roshan, Prabhat Kumar, and Rajeev Ranjan. 2013. A

Comprehensive Study on Multifactor Authentication Schemes. In Advances in
Computing and Information Technology, Natarajan Meghanathan, Dhinaharan

Nagamalai, and Nabendu Chaki (Eds.). Springer Berlin Heidelberg.

[2] Shannon Appelcline. 2021. Using Timelocks to Protect Digital As-

sets. https://github.com/BlockchainCommons/SmartCustody/blob/master/Docs/

Timelocks.md. Accessed, Dec 2023.

[3] Argent. 2021. Argent Smart Wallet Specification. https://github.com/argentlabs/

argent-contracts/blob/develop/specifications/specifications.pdf. Accessed, Dec

2023.

[4] MT Bank. 2024. MT Bank Reset Passcode. http://tinyurl.com/mtd48pm9. Ac-

cessed, Jan 2024.

[5] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. 2012. Bitter to Better

— How to Make Bitcoin a Better Currency. In Financial Cryptography and Data
Security, Angelos D. Keromytis (Ed.). Springer Berlin Heidelberg.

[6] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. 2012.

The Quest to Replace Passwords: A Framework for Comparative Evaluation of

Web Authentication Schemes. In 2012 IEEE Symposium on Security and Privacy.
https://doi.org/10.1109/SP.2012.44

[7] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A.

Kroll, and EdwardW. Felten. 2015. SoK: Research Perspectives and Challenges for

Bitcoin and Cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy.
https://doi.org/10.1109/SP.2015.14

[8] Joseph Bonneau and Sören Preibusch. 2010. The Password Thicket: Technical

and Market Failures in Human Authentication on the Web.. In WEIS.
[9] Endre Boros, Vladimir Gurvich, Peter L Hammer, Toshihide Ibaraki, and Alexan-

der Kogan. 1995. Decomposability of partially defined Boolean functions. Discrete
Applied Mathematics 62, 1-3 (1995).

[10] Leon Bošnjak and Bostjan Brumen. 2019. Rejecting the death of passwords:

Advice for the future. Computer Science and Information Systems 16 (01 2019).
https://doi.org/10.2298/CSIS180328016B

[11] Michael Burrows, Martin Abadi, and Roger Needham. 1990. A Logic of Authenti-

cation. ACM Trans. Comput. Syst. 8, 1 (1990). https://doi.org/10.1145/77648.77649

[12] Camino. 2024. Create and Edit Multisig Wallets. https://docs.camino.network/

guides/multisig-wallets/create-multisig. Accessed, Jan 2024.

https://github.com/BlockchainCommons/SmartCustody/blob/master/Docs/Timelocks.md
https://github.com/BlockchainCommons/SmartCustody/blob/master/Docs/Timelocks.md
https://github.com/argentlabs/argent-contracts/blob/develop/specifications/specifications.pdf
https://github.com/argentlabs/argent-contracts/blob/develop/specifications/specifications.pdf
http://tinyurl.com/mtd48pm9
https://doi.org/10.1109/SP.2012.44
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.2298/CSIS180328016B
https://doi.org/10.1145/77648.77649
https://docs.camino.network/guides/multisig-wallets/create-multisig
https://docs.camino.network/guides/multisig-wallets/create-multisig

Asynchronous Authentication

[13] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-

tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE.

[14] Coinbase. 2024. Coinbase Wallet. https://www.coinbase.com/wallet. Accessed,

Jan 2024.

[15] R. Dedekind. 1897. Über Zerlegungen von Zahlen Durch Ihre Grössten Gemein-
samen Theiler. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-

3-663-07224-9_1

[16] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-

ferential Privacy. Found. Trends Theor. Comput. Sci. 9, 3–4 (Aug 2014). https:

//doi.org/10.1561/0400000042

[17] Jonathan Eaton. 2011. The Political Significance of the Imperial Watchword

in the early Empire. Greece and Rome 58, 1 (2011). https://doi.org/10.1017/

S0017383510000525

[18] Ittay Eyal. 2022. On cryptocurrency wallet design. In 3rd International Confer-
ence on Blockchain Economics, Security and Protocols (Tokenomics 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[19] Federal Trade Commission. 2022. Consumer sentinel network data book 2021.

[20] Joan Feigenbaum. 1992. Overview of interactive proof systems and zero-

knowledge. Contemporary Cryptology: The Science of Information Integrity (1992).
[21] Google. 2024. How Google uses cookies. hhttps://policies.google.com/

technologies/cookies?hl=en-GB. Accessed, May 2024.

[22] Google. 2024. How Google uses location information. https://policies.google.

com/technologies/location-data?hl=en-GB. Accessed, May 2024.

[23] Google. 2024. Respond to security alerts. https://support.google.com/accounts/

answer/2590353?hl=en. Accessed, Jan 2024.

[24] United States government. 2024. Authentication methods. https://www.login.

gov/help/get-started/authentication-methods/. Accessed, May 2024.

[25] Joseph Y. Halpern and Yoram Moses. 1990. Knowledge and Common Knowledge

in a Distributed Environment. J. ACM 37, 3 (Jul 1990). https://doi.org/10.1145/

79147.79161

[26] Sven Hammann, Saša Radomirović, Ralf Sasse, and David Basin. 2019. User

Account Access Graphs. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’19). Association for Computing

Machinery, New York, NY, USA. https://doi.org/10.1145/3319535.3354193

[27] Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter,

Heinrich Riebler, Michael Lass, and Christian Plessl. 2023. A computation of

D(9) using FPGA Supercomputing. arXiv:2304.03039 [cs.DM]

[28] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. 2013. Polynomial

runtime and composability. Journal of Cryptology 26 (2013).

[29] Leumi International. 2024. Leumi International - Security Questions. https:

//english.leumi.co.il/Articles/32891/. Accessed, Jan 2024.

[30] Prashant Jha. April 2022. The aftermath of Axie Infinity’s $650M Ronin Bridge

hack. Cointelegraph (April 2022). https://cointelegraph.com/news/the-aftermath-

of-axie-infinity-s-650m-ronin-bridge-hack.

[31] Leslie Lamport. 1981. Password Authentication with Insecure Communication.

Commun. ACM 24, 11 (nov 1981). https://doi.org/10.1145/358790.358797

[32] Ledger. 2024. Ledger Hardware Wallet. https://www.ledger.com/. Accessed, Jan

2024.

[33] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. 2003. Delegation Logic:

A Logic-Based Approach to Distributed Authorization. ACM Trans. Inf. Syst.
Secur. 6, 1 (feb 2003). https://doi.org/10.1145/605434.605438

[34] Easwar Vivek Mangipudi, Udit Desai, Mohsen Minaei, Mainack Mondal, and

Aniket Kate. 2022. Uncovering Impact of Mental Models towards Adoption

of Multi-device Crypto-Wallets. Cryptology ePrint Archive, Paper 2022/075.

https://eprint.iacr.org/2022/075 https://eprint.iacr.org/2022/075.

[35] DeepakMaram,Mahimna Kelkar, and Ittay Eyal. 2022. Interactive Authentication.

Cryptology ePrint Archive, Paper 2022/1682. https://eprint.iacr.org/2022/1682

https://eprint.iacr.org/2022/1682.

[36] Griffin Mcshane. 2022. What Is a Multisig Wallet? https://www.coindesk.com/

learn/what-is-a-multisig-wallet/. Accessed, Dec 2023.

[37] John Mecke. 2019. 5 Stories About People Who Lost Their Bit-

coin. https://john-mecke.medium.com/5-stories-about-people-who-lost-their-

bitcoin-cdaaae329468. Accessed, Jan 2024.

[38] Metamask. 2024. Get started with MetaMask Portfolio. https://metamask.io/.

Accessed, Jan 2024.

[39] Robert Morris and Ken Thompson. 2002. Password Security: A Case History.

Commun. ACM 22 (05 2002). https://doi.org/10.1145/359168.359172

[40] Scott Nevil. 2023. Bitcoin safe storage - cold wallet. https://www.investopedia.

com/news/bitcoin-safe-storage-cold-wallet/. Accessed, Dec 2023.

[41] Soumya Prakash Otta, Subhrakanta Panda, Maanak Gupta, and Chittaranjan

Hota. 2023. A Systematic Survey of Multi-Factor Authentication for Cloud

Infrastructure. Future Internet 15, 4 (2023). https://doi.org/10.3390/fi15040146

[42] Charles P. Pfleeger and Shari Lawrence Pfleeger. 2012. Security in Computing,
4th Edition. Prentice Hall.

[43] Youer Pu, Lorenzo Alvisi, and Ittay Eyal. 2022. Safe Permissionless Consensus.

In 36th International Symposium on Distributed Computing.

[44] Youer Pu, Ali Farahbakhsh, Lorenzo Alvisi, and Ittay Eyal. 2023. Gorilla: Safe Per-

missionless Byzantine Consensus. In 37th International Symposium on Distributed
Computing.

[45] Ariel Rabkin. 2008. Personal knowledge questions for fallback authentication:

Security questions in the era of Facebook. In Proceedings of the 4th Symposium
on Usable Privacy and Security.

[46] BCC Research. 2022. Non-Fungible Tokens (NFT): Global Market. https://www.

bccresearch.com/market-research/information-technology/nft-market.html. Ac-

cessed: June 2023.

[47] Grand View Research. 2023. Cryptocurrency Market Size, Share and

Growth Report, 2030. https://www.grandviewresearch.com/industry-analysis/

cryptocurrency-market-report. Accessed, Dec 2023.

[48] Keunwoo Rhee, Jin Kwak, Seungjoo Kim, and Dongho Won. 2005. Challenge-

response based RFID authentication protocol for distributed database environ-

ment. In Security in Pervasive Computing: Second International Conference, SPC
2005, Boppard, Germany, April 6-8, 2005. Proceedings 2. Springer.

[49] R. L. Rivest, A. Shamir, and L. Adleman. 1978. A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Commun. ACM 21, 2 (feb 1978).

https://doi.org/10.1145/359340.359342

[50] Norman Field (HYPR) Salah Machani (RSA Security). 2022. FIDO Alliance White
Paper: Choosing FIDO Authenticators for Enterprise Use Cases. Technical Report.
FIDO Alliance.

[51] Stuart Schechter, AJ Bernheim Brush, and Serge Egelman. 2009. It’s no secret.

measuring the security and reliability of authentication via secret questions. In

2009 30th IEEE symposium on security and privacy. IEEE.
[52] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State

Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (dec 1990). https:

//doi.org/10.1145/98163.98167

[53] Bruce Schneier. 1996. Applied cryptography: protocols, algorithms, and source code
in C (2nd ed.). Wiley, New York.

[54] Richard E Smith. 2001. Authentication: from passwords to public keys. Addison-
Wesley Longman Publishing Co., Inc.

[55] Speior. 2023. Advanced MPC Wallets for Digital Assets and Custody Infrastruc-

ture. https://sepior.com/. Accessed, Jan 2024.

[56] William Stallings. 2003. Cryptography and network security - principles and
practice (3. ed.). Prentice Hall.

[57] William. Stallings and Lawrie. Brown. 2012. Computer security : principles and
practice / William Stallings, Lawrie Brown ; with contributions by Mick Bauer,
Michael Howard (2nd ed. ed.). Pearson Boston.

[58] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I. Schiller. 1988. Kerberos:

An Authentication Service for Open Network Systems. In USENIX Winter.
[59] Andrew S Tanenbaum. 2007. Distributed systems principles and paradigms.
[60] Chainalysis Team. 2020. 60% of Bitcoin is Held Long Term as Digital Gold.

What About the Rest? https://blog.chainalysis.com/reports/bitcoin-market-data-

exchanges-trading/.

[61] Trezor. 2024. Trezor Hardware Wallet. https://trezor.io/. Accessed, Jan 2024.

[62] Arti Vaish, Anand Sharma, and Anshu Sharma. 2020. Review Reports on User

Authentication Methods in Cyber Security. WSEAS TRANSACTIONS ON COM-
MUNICATIONS 19 (10 2020). https://doi.org/10.37394/23204.2020.19.17

[63] Maarten Van Steen and Andrew S Tanenbaum. 2017. Distributed systems. Maarten

van Steen Leiden, The Netherlands.

[64] Ignacio Velásquez, Angélica Caro, and Alfonso Rodríguez. 2018. Authentication

schemes and methods: A systematic literature review. Information and Software
Technology 94 (2018). https://doi.org/10.1016/j.infsof.2017.09.012

[65] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out Blockchains with

Asynchronous Consensus Zones. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA.

https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping

[66] Yong Zhu, Tieniu Tan, and Yunhong Wang. 2000. Biometric personal identi-

fication based on iris patterns. In Proceedings 15th International Conference on
Pattern Recognition. ICPR-2000, Vol. 2. https://doi.org/10.1109/ICPR.2000.906197

[67] Verena Zimmermann, Nina Gerber, Peter Mayer, Marius Kleboth, Alexandra

von Preuschen, and Konstantin Schmidt. 2019-11-11. Keep on rating – on the

systematic rating and comparison of authentication schemes. Information and
computer security. 27, 5 (2019-11-11).

[68] Zuriati Ahmad Zukarnain, Amgad Muneer, and Mohd Khairulanuar Ab Aziz.

2022. Authentication Securing Methods for Mobile Identity: Issues, Solutions

and Challenges. Symmetry 14, 4 (2022). https://doi.org/10.3390/sym14040821

A SECURITY PARAMETERS AND
MECHANISMS FAMILIES

A.1 Mechanisms With Security Parameters
Definition 15 (Authentication mechanism). An authentica-

tion mechanism𝑀𝜆 is a finite deterministic automaton, parametrized

https://www.coinbase.com/wallet
https://doi.org/10.1007/978-3-663-07224-9_1
https://doi.org/10.1007/978-3-663-07224-9_1
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1017/S0017383510000525
https://doi.org/10.1017/S0017383510000525
hhttps://policies.google.com/technologies/cookies?hl=en-GB
hhttps://policies.google.com/technologies/cookies?hl=en-GB
https://policies.google.com/technologies/location-data?hl=en-GB
https://policies.google.com/technologies/location-data?hl=en-GB
https://support.google.com/accounts/answer/2590353?hl=en
https://support.google.com/accounts/answer/2590353?hl=en
https://www.login.gov/help/get-started/authentication-methods/
https://www.login.gov/help/get-started/authentication-methods/
https://doi.org/10.1145/79147.79161
https://doi.org/10.1145/79147.79161
https://doi.org/10.1145/3319535.3354193
https://arxiv.org/abs/2304.03039
https://english.leumi.co.il/Articles/32891/
https://english.leumi.co.il/Articles/32891/
https://cointelegraph.com/news/the-aftermath-of-axie-infinity-s-650m-ronin-bridge-hack
https://cointelegraph.com/news/the-aftermath-of-axie-infinity-s-650m-ronin-bridge-hack
https://doi.org/10.1145/358790.358797
https://www.ledger.com/
https://doi.org/10.1145/605434.605438
https://eprint.iacr.org/2022/075
https://eprint.iacr.org/2022/075
https://eprint.iacr.org/2022/1682
https://eprint.iacr.org/2022/1682
https://www.coindesk.com/learn/what-is-a-multisig-wallet/
https://www.coindesk.com/learn/what-is-a-multisig-wallet/
https://john-mecke.medium.com/5-stories-about-people-who-lost-their-bitcoin-cdaaae329468
https://john-mecke.medium.com/5-stories-about-people-who-lost-their-bitcoin-cdaaae329468
https://metamask.io/
https://doi.org/10.1145/359168.359172
https://www.investopedia.com/news/bitcoin-safe-storage-cold-wallet/
https://www.investopedia.com/news/bitcoin-safe-storage-cold-wallet/
https://doi.org/10.3390/fi15040146
https://www.bccresearch.com/market-research/information-technology/nft-market.html
https://www.bccresearch.com/market-research/information-technology/nft-market.html
https://www.grandviewresearch.com/industry-analysis/cryptocurrency-market-report
https://www.grandviewresearch.com/industry-analysis/cryptocurrency-market-report
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://sepior.com/
https://blog.chainalysis.com/reports/bitcoin-market-data-exchanges-trading/
https://blog.chainalysis.com/reports/bitcoin-market-data-exchanges-trading/
https://trezor.io/
https://doi.org/10.37394/23204.2020.19.17
https://doi.org/10.1016/j.infsof.2017.09.012
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
https://doi.org/10.1109/ICPR.2000.906197
https://doi.org/10.3390/sym14040821

Marwa Mouallem and Ittay Eyal

by the security parameter 𝜆 and specified by two functions, gen𝑀𝜆 (·)
and step𝑀𝜆 (·):

• gen𝑀𝜆 (𝑛), where 𝑛 is the number of credentials (Note that the
security parameter is given implicitly with𝑀𝜆), is a secure
credential generator. And

• step𝑀𝜆 (msg, 𝑖), where msg is the message the mechanism re-
ceived (perhaps no message, represented by msg = ⊥), sent
from player 𝑖 , is a function that updates the state of the mech-
anism and returns a pair (msg𝑠0,msg𝑠1) of sets of messages
(maybe empty) to send to the players by their identifiers. It
can access and update the mechanism’s state and the set of
credentials public part {𝑐𝑃

𝑖
}𝑛
𝑖=1

.

A player is defined by its strategy, a function that defines its

behavior. Formally,

Definition 16 (Strategy). A strategy 𝑆𝜆 of a player 𝑝 is a
function, parametrized by the security parameter 𝜆, that takes a
message from the mechanism as input (which may be empty, denoted
by ⊥), and has access to the player’s state and credentials 𝐶𝜎

𝑝 . It
updates the player’s state and returns a set of messages to be sent
back to the mechanism.

A.2 Execution
We now describe the execution of the system. It consists of two

parts: setup (Setup function, Algorithm 3) and a main loop (Execute
function, Algorithm 4). The setup generates a set of 𝑛 creden-

tials {𝑐𝑖 = (𝑐𝑃𝑖 , 𝑐
𝑆
𝑖
)}𝑛

𝑖=1
using the function gen𝑀𝜆 (𝑛) (line 1). The

credential generation function gen𝑀𝜆 (𝑛) draws randomness from

the random tape 𝑣 and returns a set of 𝑛 credentials. Then the setup

function assigns each player credentials according to the scenario 𝜎

(lines 2-3), and the mechanism receives all the credentials’ public

parts (line 4). Then it assigns an identifier to each player:𝛾ID ∈ {0, 1}
to the user (line 5) and (1 − 𝛾ID) to the attacker (line 6). Whenever

a random coin is used by𝑀𝜆
or the players, the result is the next

bit of 𝑣 .

Once the setup is complete, the main loop begins (line 2). From

this point onwards in the execution, both players 𝑝 ∈ {𝑈 ,𝐴} can
send messages to the mechanism, each based on her strategy 𝑆𝜆𝑝
and the set of credentials available to her 𝐶𝜎

𝑝 .

Time progresses in discrete steps 𝑡 , accessible to the mechanism

and players. The communication network is reliable but asynchro-

nous. Messages arrive eventually, but there is no bound on the time

after they were sent and no constraints on the arrival order. This

is implemented as follows. The scheduler maintains three sets of

pending messages, one for each entity identifier 𝑒 ∈ {0, 1, 𝑀𝜆},
denoted by Pending𝑒 . The scheduler is parametrized by an ordering

function 𝛾ord.

In each step, it uses 𝛾ord to choose a subset of messages (maybe

empty) from each of the pending message sets, and returns them as

an ordered list (line 6). The scheduler removes the chosen messages

from the pending messages sets (line 7). The function 𝛾ord gets as

input the identifier of the entity 𝑒 ∈ {0, 1, 𝑀𝜆} that the messages

are sent to. It also has access to the state of the execution and a

separate scheduler random tape 𝑣𝛾 . However, 𝛾ord does not have

access to the messages themselves, the security parameter nor to

the entities’ random tape 𝑣 . We use an ordering function that’s

Algorithm 3: Setup of the system, with mechanism𝑀𝜆
in

scenario 𝜎

Setup(𝑀𝜆, 𝜎, 𝑆𝜆
𝑈
, 𝑆𝜆

𝐴
, 𝛾, 𝑣)

1 𝐶 ← gen
𝑀𝜆 (𝑛) // Generating the set of credentials𝐶 = {𝑐𝑖 = (𝑐𝑃𝑖 , 𝑐

𝑆
𝑖
) }𝑛

𝑖=1

2 𝐶𝜎
𝑈
← {𝑐𝑆

𝑖
|𝜎𝑈 𝑖 = 1} // Assigning the credentials’ secret parts to the user

3 𝐶𝜎
𝐴
← {𝑐𝑆

𝑖
|𝜎𝐴𝑖 = 1} // Assigning the credentials’ secret parts to the attacker

4 𝐶𝜎
𝑀
← {𝑐𝑃

𝑖
|𝑖 ∈ {1, ..., 𝑛}} // Assigning the credentials’ public parts to the mechanism

5 𝑆𝛾ID ,𝐶𝛾ID ← 𝑆𝜆
𝑈
,𝐶𝜎

𝑈
// Assugning 𝛾ID to the user

6 𝑆1−𝛾ID ,𝐶1−𝛾ID ← 𝑆𝜆
𝐴
,𝐶𝜎

𝐴
// Assugning 1 − 𝛾ID to the attacker

7 return𝑀𝜆 , 𝑆0,𝐶0, 𝑆1,𝐶1, 𝑣
′

oblivious to the messages content and the security parameter to

model a system in which, for a sufficiently large security parameter,

messages eventually arrive during the execution. The ordering

function’s lack of access to the messages and the security parameter

ensures that it cannot delay messages until after the execution ends

for all 𝜆.

Using two separate random tapes, one for the scheduler and

another for all other entities in the system, is only for presenta-

tion purpose. This is equivalent to using a single global random

tape. Because there exists a mapping between the two, e.g., given a

global random tape, we map it into two separate tapes such that the

elements in the odd indices are mapped to the scheduler tape and

the elements in the even indices are mapped to the other entities’

tape.

Each player 𝑝 ∈ {𝑈 ,𝐴} receives the messages chosen by the

ordering function 𝛾ord and sends messages to the mechanism ac-

cording to her strategy 𝑆𝜆𝑝 (lines 9-12). Messages sent by the players

are added to themechanism’s pendingmessages set Pending𝑀 . Simi-

larly, the mechanism receives the messages chosen by 𝛾ord. After ev-

ery message msg it receives, the mechanism updates its state using

its function step𝑀𝜆 (msg) and returnsmessages to add to the players’

pending messages sets Pending
0
, Pending

1
(line 14). It then checks if

the mechanism has decided which one of the players is recognized

as the user by checking its variable decide𝑀𝜆 (lines 17-18). Once the

mechanism reaches a decision, the execution ends and the player

with the matching index (either 0 or 1) wins. The tuple (𝛾ID, 𝛾ord, 𝑣𝛾)
thus defines the scheduler’s behavior. And an execution 𝐸𝜆 (Algo-

rithm 5) is thus defined by its parameter tuple (𝑀𝜆, 𝜎, 𝑆𝜆
𝑈
, 𝑆𝜆

𝐴
, 𝛾, 𝑣);

by slight abuse of notation we write 𝐸𝜆 = (𝑀𝜆, 𝜎, 𝑆𝜆
𝑈
, 𝑆𝜆

𝐴
, 𝛾, 𝑣).

A.3 Denial of Service attacks
We assume that the attacker cannot affect the delivery time of

user messages. In particular, she cannot perform a denial of service

attack by sendingmessages in a way that causes𝛾ord to always delay

the user’s messages. This is implemented by using two separate

ordering functions 𝛾0ord, 𝛾
1

ord for the player with identifier 0 and the

player with identifier 1 respectively.

A.4 Mechanism Success
In an asynchronous environment we cannot guarantee that the

mechanism correctly identifies the user in any scenario within any

bounded time due to the simple fact that the scheduler can delay

messages indefinitely. However, to maintain cryptographic secu-

rity, execution time must be bounded—in a longer execution the

Asynchronous Authentication

Algorithm 4: Execution main loop of𝑀𝜆

Execute(𝑀𝜆, 𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾ord, 𝑣𝛾 , 𝑣𝛾 , 𝑣, 𝑡)
1 decide

𝑀𝜆 ← ⊥ // Initialize𝑀𝜆
’s decision variable

2 for 𝑒 ∈ {0, 1, 𝑀𝜆 } do
3 Pending𝑒 ← ∅ // Initialize the message sets

4 for 𝑡 = 0, 1, 2, ...,min(𝑡,𝑇 (𝜆)) do
5 for 𝑒 ∈ {0, 1, 𝑀𝜆 } do // The scheduler chooses which messages to deliver

6 𝑙𝑒 ← 𝛾ord (𝑒) + [⊥]
7 Pending𝑒 ← Pending𝑒 \ 𝑙𝑒
8 Pending′

𝑀𝜆
← ∅

9 for msg in 𝑙0 do
10 Pending′

𝑀𝜆
← Pending′

𝑀𝜆
∪ 𝑆0 (msg) // Player 0 sends messages to the

mechanism

11 for msg in 𝑙1 do
12 Pending′

𝑀𝜆
← Pending′

𝑀𝜆
∪ 𝑆1 (msg) // Player 1 sends messages to the

mechanism

13 for msg in 𝑙𝑀 do
14 (Pending′

0
, Pending′

1
) ← step

𝑀𝜆 (msg) // The mechanism sends messages to

the players

15 Pending
0
← Pending

0
∪ Pending′

0
// Player 0’s messages are added to the

message set

16 Pending
1
← Pending

1
∪ Pending′

1
// Player 1’s messages are added to the

message set

17 if decide
𝑀𝜆 ≠ ⊥ then // Check if the mechanism reached a decision

18 Return decide
𝑀𝜆 // The chosen player wins

19 Pending
𝑀𝜆 ← Pending

𝑀𝜆 ∪ Pending′
𝑀𝜆

// The mechanism’s messages are added

to the message set

Algorithm 5: Execution of𝑀𝜆
in scenario 𝜎

1 𝑀𝜆 , 𝑆0,𝐶0, 𝑆1,𝐶1, 𝑣 ← Setup(𝑀𝜆 , 𝜎, 𝑆𝜆
𝑈
, 𝑆𝜆

𝐴
, 𝛾, 𝑣)

2 Execute(𝑀𝜆 , 𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾ord, 𝑣𝛾 , 𝑣)

attacker’s probability of guessing credentials is not negligible. Pre-

vious work (e.g., [43, 44, 65]) sidesteps this issue with protocols that

use an ideal signature scheme that cannot be broken indefinitely.

We use this abstraction in the rest of the paper. However, in our

case this abstraction is not fully satisfactory, as we make claims

on general mechanisms using standard communication channels,

so for any bounded message length we practically cannot rule out

forgery.

Conceptually, we define success as follows. If the mechanism

times out in a given execution, we would like to extend the execu-

tion and allow it to succeed in the extended execution. To extend

the execution without violating cryptographic security, we must

increase the security parameter, effectively using a different mech-

anism. Intuitively, we are interested in mechanism families that
behave similarly for all security parameters, e.g., verify a signature

and send a message independent of the signature details. The re-

quirement is that given such a scheduler, for all sufficiently large

security parameters, mechanisms in the family with sufficiently

large parameter succeed.

Rather than mechanisms, success is therefore defined for mecha-

nism families that behaves similarly for different security param-

eters. A mechanism family 𝑀 is a function that maps a security

parameter 𝜆 to a mechanism 𝑀𝜆
. Similarly, a strategy family 𝑆 is

a function that maps a security parameter 𝜆 to a strategy 𝑆𝜆 . A

mechanism family is successful in a scenario 𝜎 if, for a large enough

security parameter, the user wins against all attacker strategies and

schedulers. Formally,

Definition 17 (Mechanism success). Amechanism family𝑀 is
successful in a scenario𝜎 , if there exists a user strategy family 𝑆𝑈 such
that for all attacker strategy families 𝑆𝐴 , schedulers 𝛾 , and random
tapes 𝑣 , there exists a security parameter 𝜆0 such that:

(1) for all security parameters 𝜆 ≥ 𝜆0, the user wins the execu-
tion 𝐸𝜆 = (𝑀𝜆, 𝜎, 𝑆𝜆

𝑈
, 𝑆𝜆

𝐴
, 𝛾, 𝑣). And,

(2) for all security parameters 𝜆, either the user wins or the exe-
cution times out.

Such a user strategy family 𝑆𝑈 is a winning user strategy family

in 𝜎 with𝑀 . Otherwise, the mechanism family fails.

B ONE-SHOT MECHANISMS DOMINANCE -
FULL PROOF

Given any mechanism family we construct a dominating one-shot

mechanism family by simulating the original mechanism’s execu-

tion.

Construction 3. For all 𝜆 ∈ N+, we define 𝑀𝜆
OS by specifying

the functions gen
𝑀𝜆

OS
(·) and step

𝑀𝜆
OS
(·). The credentials’ generation

function gen
𝑀𝜆

OS
(·) is the same as gen𝑀𝜆 (·). The mechanism’s step

function is described in Algorithm 1.
A behavior of 𝑀𝜆

OS is as follows: If it does not receive a message
during its execution, it times out. If it receives multiple messages from
a player, it ignores all but the first one (lines 2-7). This is implemented
using the variables processing

0
and processing

1
that indicate whether

the mechanism has received a message from player 0 and 1, respec-
tively, both initialized to 0. If 𝑀𝜆

OS receives a message that is not a
valid strategy and credentials pair, then it decides the identifier of the
other player (line 11).

Consider the first message it receives. If it is a valid strategy and
credentials pair, then𝑀𝜆

OS simulates an execution of𝑀𝜆 (line 14) with
the given strategy and credentials while setting both the opponent’s
strategy and credentials to ⊥ each (lines 8-9). It uses a scheduler
random tape 𝑣𝛾 and an execution random tape 𝑣 ′ drawn from 𝑣 ,
and an ordering function 𝛾

𝑣𝛾

ord that chooses the time and ordering of
message delivery randomly based on 𝑣𝛾 . If 𝑀𝜆 ’s execution decides,
then𝑀𝜆

OS decides the same value. Otherwise,𝑀𝜆
OS waits for the next

message.
If a message arrives from the other player, then similar to the pre-

vious case𝑀𝜆
OS simulates an execution of𝑀𝜆 with the given strategy

and credentials while setting the opponent’s to ⊥. And again, if𝑀𝜆 ’s
simulated execution decides, then𝑀𝜆

OS decides the same value. Other-
wise,𝑀𝜆

OS waits until 𝑇 (𝜆) execution steps pass and then times out.
So it can decide after receiving the first message from either player or
time out.

The mechanism family𝑀OS (𝑀) is one-shot as each of its mecha-

nisms decides based only on the first message it receives from each

player. To prove it dominates𝑀 , we first show that the attacker’s

message does not lead to her wining.

Lemma 7. Let 𝜎 be a scenario and let𝑀 be a mechanism family
successful in 𝜎 . Then, for all 𝜆 and all executions of 𝑀𝜆

OS (𝑀
𝜆) in

scenario 𝜎 in which the function step
𝑀𝜆

OS (𝑀𝜆) (·) receives a message
from the attacker for the first time, either the function sets decide

𝑀𝜆
OS

to the user’s identifier or the simulated execution of𝑀𝜆 times out.

Marwa Mouallem and Ittay Eyal

Proof. Let 𝜎 be a scenario and let 𝑀 be a mechanism family

successful in 𝜎 . Let 𝜆 ∈ N+ and consider an execution of 𝑀𝜆
OS in

scenario 𝜎 in which the function step
𝑀𝜆

OS
(·) receives an attacker’s

message for the first time. Denote the identifier of the attacker

by 𝑖 ∈ {0, 1}. If the attacker’s message is not a valid encoding of

a strategy and credentials set, then 𝑀𝜆
OS decides the identifier of

the user, and we are done because it sets decide
𝑀𝜆

OS
to the user’s

identifier.

Otherwise, the attacker’s message is an encoding of a valid strat-

egy and credentials pair (𝑆𝜆
𝐴
, 𝐶𝜆

𝐴
). In this case,𝑀𝜆

OS sets the strate-

gies and credentials to 𝑆𝑖 = 𝑆𝜆
𝐴
, 𝐶𝑖 = 𝐶𝜆

𝐴
, 𝑆1−𝑖 = ⊥, and 𝐶1−𝑖 =

⊥, 𝛾𝑣𝛾ord, 𝑣𝛾 and 𝑣 ′ as in the definition of 𝑀𝜆
OS, and simulates 𝑀𝜆

’s

execution by running Execute(𝑀𝜆, 𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾
𝑣𝛾

ord, 𝑣𝛾 , 𝑣
′). If the

simulation times-out or returns the identifier of the user we are

done. The only remaining option is that the simulation returns the

identifier of the attacker. To show this is impossible, assume by

contradiction that the attacker wins in this simulated execution.

First, we show that there exists an execution of𝑀𝜆
that is identi-

cal to the simulated one. Let 𝛾 = (𝛾OSID , 𝛾
𝑣𝛾

ord, 𝑣𝛾) be a scheduler such
that the user gets the same identifier as in the execution of𝑀𝜆

OS, with

the same ordering function and scheduler random tape that 𝑀𝜆
OS

uses to simulate 𝑀𝜆
’s main loop. And let 𝑣𝑀 be a random tape

such that when the execution 𝐸𝜆 = (𝑀𝜆, 𝜎,⊥, 𝑆𝜆
𝐴
, 𝛾, 𝑣𝑀) reaches

the main loop, all the next bits of 𝑣𝑀 are equal to 𝑣 ′. Note that

the main loop of 𝐸𝜆 is the same as the one 𝑀𝜆
OS simulates in 𝐸𝜆OS.

And the attacker wins in the execution 𝐸𝜆 (by the contradiction

assumption).

We thus established a simulated execution in which the at-

tacker wins, and in this simulation there exists a time 𝜏 < 𝑇 (𝜆)
when the simulated 𝑀𝜆

decides the identifier of the attacker.

Since 𝑀 is successful in scenario 𝜎 , there exists a winning user

strategy family 𝑆𝑈 . Let 𝛾 ′ be a scheduler such that in the exe-

cution 𝐸′𝜆 = (𝑀𝜆, 𝜎, 𝑆𝜆
𝑈
, 𝑆𝜆

𝐴
, 𝛾 ′, 𝑣𝑀) it behaves like 𝛾 except 𝑀𝜆

receives the user’s messages not before 𝜏 and before 𝑇 (𝜆). Such
a scheduler exists since the communication is asynchronous and

message delivery time is unbounded.

At any time step before 𝜏 , the mechanism 𝑀𝜆
sees the same

execution prefix whether it is in the execution 𝐸𝜆 with an empty

user strategy or in the execution 𝐸′𝜆 with a winning user strategy.

Thus, it cannot distinguish between the case where it is in 𝐸𝜆 or 𝐸′𝜆

at 𝜏 . Since in 𝐸𝜆 the mechanism𝑀𝜆
decides at 𝜏 ,𝑀𝜆

must decide

the same value at 𝜏 in 𝐸′𝜆 . That is, the attacker wins also in the

execution 𝐸′𝜆 , contradicting the fact that 𝑆𝑈 is a winning user

strategy for𝑀 in 𝜎 . Thus, the attacker cannot win in the simulated

execution of𝑀𝜆
. □

Now we can prove domination.

Proposition 2. For all profiles 𝜋 , an authentication mechanism
family that solves the 𝜋 asynchronous authentication problem is
dominated by a one-shot mechanism family.

Proof. Assume that𝑀 is successful in a scenario 𝜎 . Then, there

exists a user strategy family 𝑆𝑈 such that for every attacker strategy

family 𝑆𝐴 , scheduler 𝛾 , and random tape �̃� , there exists a security

parameter 𝜆suc, such that for all 𝜆 > 𝜆suc, the user wins the corre-

sponding execution (𝑀𝜆, 𝜎, 𝑆𝜆
𝑈
, 𝑆𝜆

𝐴
, 𝛾, �̃�). And for all 𝜆 > 0, either

the user wins or the execution times out.

We now show that𝑀OS is successful in scenario 𝜎 as well. Denote

by 𝑆OS
𝑈

the user strategy family such that for all 𝜆 > 0, 𝑆
OS,𝜆
𝑈

sends

an encoding of the strategy 𝑆𝜆
𝑈

from the winning user strategy

family 𝑆𝑈 and a set of credentials𝐶𝑈 ⊆ 𝐶𝜎
𝑈
that 𝑆𝜆

𝑈
uses in a single

message on the first step. And consider any execution of 𝑀𝜆
OS in

scenario 𝜎 with the user strategy 𝑆
OS,𝜆
𝑈

. Note: In the Setup function
of an execution, the first player in the tuple is always the user and

the second is the attacker. However, in the Execute function, the
first player is the player with identifier 0, which can be the user or

the attacker, and the second is the player with identifier 1.

As for all 𝜆 > 0, 𝑆
OS,𝜆
𝑈

sends a message in the first step, there

exists a security parameter 𝜆OS
0

such that for all 𝜆OS > 𝜆OS
0
, the

user’s message arrives before 𝑇 (𝜆). It might be the case that an

attacker’s message arrives first. If the mechanism does not receive

any messages, it times out. This is possible only if 𝜆 < 𝜆OS
0
, as

the user strategy we chose does send a message. Otherwise,𝑀𝜆
OS

eventually receives and processes at least one message during its

execution, then we consider two cases separately: a user’s message

arrives first, or an attacker’s message arrives first.

Denote by 𝑖 ∈ {0, 1} the identifier of the player whose

message arrives first. If the user’s message msg ar-

rives first with the encoded strategy and credential

set (𝑆𝜆
𝑈
, 𝐶𝑈) = extractStrategy(msg), then𝑀𝜆

OS sets the strategies

to 𝑆𝑖 = 𝑆𝜆
𝑈
, 𝐶𝑖 = 𝐶𝑈 , 𝑆1−𝑖 = ⊥, and 𝐶1−𝑖 = ⊥, the scheduler

random tape 𝛾𝑣 , the ordering function 𝛾
𝑣𝛾

ord, and the random

tape 𝑣 ′ as described in 𝑀OS’s definition, and simulates 𝑀𝜆
’s

execution by running Execute(𝑀𝜆, 𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾
𝑣𝛾

ord, 𝑣𝛾 , 𝑣
′). De-

note by 𝛾 = (𝛾OSID , 𝛾
𝑣𝛾

ord, 𝑣𝛾) the scheduler such that the user gets

the same identifier as in the execution of 𝑀𝜆
OS, with the same

ordering function and scheduler random tape that 𝑀𝜆
OS uses to

simulate 𝑀𝜆
’s main loop. Because 𝑆𝑈 is a winning user strategy

family in 𝑀 , there exists 𝜆suc such that for all 𝜆 > 𝜆suc, the user

wins the execution 𝐸𝜆 = (𝑀𝜆, 𝜎, 𝑆𝜆
𝑈
,⊥, 𝛾, 𝑣 ′). If 𝜆 > 𝜆suc, the

simulation terminates and returns the user’s identifier 𝑖 , so 𝑀𝜆
OS

also returns 𝑖 .

Otherwise, as 𝜆 ≤ 𝜆suc, and because 𝑆𝑈 is a winning user strat-

egy family for𝑀𝜆
, if the simulation terminates then it must return

the identifier of the user. And so does the mechanism𝑀𝜆
OS. If the

simulation does not terminate, then 𝑀𝜆
OS waits for the next mes-

sage from the other player (the attacker). If no message arrives

before 𝑇 (𝜆), then𝑀𝜆
OS times out as well (note this is possible only

if 𝜆 ≤ 𝜆suc because otherwise 𝑀
𝜆
OS would have already returned

the user’s identifier). Otherwise,𝑀𝜆
OS’s step function receives the

attacker’s message, and by Lemma 1, either𝑀𝜆
OS decides the user

or the simulated execution of𝑀𝜆
times out. If the simulation times

out, then𝑀𝜆
OS times out as well. Overall we showed that if 𝜆 > 𝜆OS

0
,

a user’s message is received by 𝑀𝜆
OS. And if the user’s message

arrives first, then if 𝜆 > 𝜆suc, the user wins, and for all 𝜆, either the

user wins or the execution times out.

Asynchronous Authentication

Now assume the attacker’s message arrives first to𝑀𝜆
OS. Again

by Lemma 1, either𝑀𝜆
OS decides the user or the simulated execution

of𝑀𝜆
in𝑀𝜆

OS times out. If𝑀𝜆
OS decides the user, then we are done.

Otherwise, the simulation times out, and 𝑀𝜆
OS waits for the next

message from the other player (the user). If no other message arrives

before 𝑇 (𝜆), then 𝑀𝜆
OS times out. This is possible only if 𝜆 < 𝜆OS

0

by definition of 𝜆OS
0
.

Otherwise, 𝑀𝜆
OS receives the user’s message with her en-

coded strategy and credentials set. Then similar to the pre-

vious case, 𝑀𝜆
OS sets the strategies, credential sets, sched-

uler random tape, ordering function, and random tape as de-

scribed in Construction 1, and simulates 𝑀𝜆
’s execution by run-

ning Execute(𝑀𝜆, 𝑆0,𝐶0, 𝑆1,𝐶1, 𝛾
𝑣𝛾

ord, 𝑣𝛾 , 𝑣
′). By the same argument

as before, we get that if 𝜆 > 𝜆suc, the simulation terminates

and returns the user’s identifier, so 𝑀𝜆
OS also returns it. Other-

wise, 𝜆 ≤ 𝜆suc, if the simulation terminates, it must return the

identifier of the user. And so does the mechanism𝑀𝜆
OS. If the simu-

lation does not terminate, then𝑀𝜆
OS times out.

Overall we showed that if 𝜆 > 𝑚𝑎𝑥 (𝜆suc, 𝜆OS
0
), the user wins. And

for 𝜆 ≤ 𝑚𝑎𝑥 (𝜆suc, 𝜆OS
0
), either the user wins or the execution times

out. Therefore,𝑀OS is successful in scenario 𝜎 . We thus conclude

that the one shot mechanism family𝑀OS dominates𝑀 . □

C DETERMINISTIC MECHANISMS ARE
DOMINATED BY BOOLEAN MECHANISMS

Lemma 4 (restated). Let𝑀det be a deterministic credential-based
mechanism and let the function 𝑓 be as constructed above. Then 𝑓 is
monotonic.

Proof. Let𝑀det be a deterministic mechanism and let 𝑓 be as

defined in Construction 2. We prove that if𝑀det is successful in a

scenario, then𝑀𝑓 is successful as well. Assume𝑀det is successful

in scenario 𝜎 = (𝜎𝑈 , 𝜎𝐴), by definition of 𝑓 , we get that 𝑓 (𝜎𝑈) = 1.

As𝑀𝜆
det is successful in 𝜎 , there exists a winning user strategy

family 𝑆det
𝑈

for𝑀det. And because𝑀det is a credential-based mech-

anism, for each 𝜆, 𝑆
det,𝜆
𝑈

sends a set of credentials 𝑐𝜆
𝑈

in a single

message. Let 𝜆 ∈ N+ be any security parameter, let 𝑆
𝑓 ,𝜆

𝑈
be the user

strategy for𝑀𝜆
𝑓
that sends the same subset of the user’s credentials

as 𝑆
det,𝜆
𝑈

in a single message in the first step. Let 𝑆
𝑓

𝐴
be an attacker

strategy family for𝑀𝑓 , 𝛾𝑓 a scheduler, and 𝑣 a random tape.

Consider the execution 𝐸𝜆
𝑓

= (𝑀𝜆
𝑓
, 𝜎, 𝑆

𝑓 ,𝜆

𝑈
, 𝑆

𝑓 ,𝜆

𝐴
, 𝛾𝑓 , 𝑣). Be-

cause 𝑆
𝑓 ,𝜆

𝑈
sends a message in the first step, there exists a security

parameter 𝜆
𝑓

0
such that for all 𝜆 > 𝜆

𝑓

0
, the user’s message arrives

before 𝑇 (𝜆). It might be the case that an attacker’s message arrives

first. If the mechanism does not receive any messages, it times out.

This is possible only if 𝜆 ≤ 𝜆
𝑓

0
, by definition of 𝜆

𝑓

0
.

Otherwise, 𝑀𝜆
𝑓
eventually receives and processes at least one

message during its execution, thenwe consider two cases separately:

a user’s message arrives first, or an attacker’s message arrives first.

If the user’s message arrives first to𝑀𝜆
𝑓
, with her set of credentials,

then as 𝑓 (𝜎𝑈) = 1 (because 𝜎 ∈ Π(𝑀det)),𝑀𝜆
𝑓
decides the user. We

get that if 𝜆 > 𝜆
𝑓

0
, then𝑀𝜆

𝑓
decides the user. And if 𝜆 ≤ 𝜆

𝑓

0
, then𝑀𝜆

𝑓

either decides the user or times out. Overall we showed that if the

user’s message arrives first, then if 𝜆 > 𝜆
𝑓

0
the user wins, otherwise,

either the user wins or the execution times out. So 𝜆
𝑓
suc = 𝜆

𝑓

0
.

Otherwise, the attacker’s message arrives first to𝑀𝜆
𝑓
. If 𝑓 (𝜎𝐴) =

0, then 𝑀𝜆
𝑓
decides the user, and we are done, because the user

wins. The only other option is if 𝑓 (𝜎𝐴) = 1. We show that this is

not possible.

By definition of 𝑓 , 𝑓 (𝑞) = 1 if and only if there exists a sce-

nario 𝜎𝑈 :𝑞 in which the user’s availability vector is 𝑞 and 𝑀det
succeeds in 𝜎𝑈 :𝑞 . Let 𝑆𝑈 :𝑞 be the winning user strategy for 𝑀det
in 𝜎𝑈 :𝑞 . Then for all attacker strategy families 𝑆𝐴 , schedulers 𝛾 =

(𝛾ID, 𝛾ord, 𝑣𝛾) and random tapes 𝑣 , there exists a security param-

eter 𝜆suc such that for all 𝜆 > 𝜆suc, the user wins the execu-

tion 𝐸𝜆
𝑈 :𝑞

= (𝑀𝜆
det, 𝜎𝑈 :𝑞, 𝑆

𝜆
𝑈 :𝑞

, 𝑆𝜆
𝐴
, 𝛾, 𝑣). This includes the attacker

strategy that does not send any messages 𝑆𝜆
𝐴
= ⊥. Then during the

execution 𝐸𝜆
𝑈 :𝑞

’s main loop there exists a time 𝜏 < 𝑇 (𝜆) when𝑀𝜆
det

decides the identifier of the user.

Now consider the execution of𝑀𝜆
det in 𝜎 , in which the attacker

uses the same strategy as the users’ 𝑆𝜆
𝑈 :𝑞

from 𝜎𝑈 :𝑞 . This is possible

as the attacker has access to all credentials the user had in 𝜎𝑈 :𝑞 .

Let 𝛾 ′ be a scheduler in which the user and the attacker’s identifiers

are opposite to the ones in𝛾 , the attacker’s message arrives first and

the user’s message is delayed beyond 𝜏 . And let 𝑣 ′ be any random

tape. Denote this execution by 𝐸𝜆 .

At any time step before 𝜏 , the mechanism 𝑀𝜆
det sees the same

execution prefix whether it is in 𝐸𝜆 or in 𝐸𝜆
𝑈 :𝑞

, and thus, it cannot

distinguish between the case where it is in 𝐸𝜆 or 𝐸𝜆
𝑈 :𝑞

. As 𝑀𝜆
det

decides the user in 𝐸𝜆
𝑈 :𝑞

’s main loop at time 𝜏 , then it must decide

the attacker at the same time 𝜏 in 𝐸𝜆 ’s main loop (as the identifiers

are reversed, and the mechanism sees the exact same execution

prefix). Therefore,𝑀𝜆
det decides the attacker in 𝐸𝜆 contradicting the

assumption that 𝑀𝜆
det succeeds in 𝜎 . We conclude that 𝑓 (𝜎𝐴) = 0

and𝑀𝜆
𝑓
decides the user also in this case. Therefore,𝑀f is successful

in 𝜎 . Overall we showed that the mechanism family𝑀f a monotonic

Boolean mechanism family and dominates𝑀det. □

D SUCCESS EQUIVALENCE
Lemma 8. Let 𝑓 be a monotonic Boolean function, and let𝑀𝑓 be

the mechanism family of 𝑓 . 𝑀𝑓 is successful in a scenario 𝜎 if and
only if 𝑓 (𝜎𝑈) = 1 and 𝑓 (𝜎𝐴) = 0.

Proof. For the first direction, assume that𝑀𝑓 is successful in a

scenario 𝜎 . Then, there exists a winning user strategy family 𝑆𝑈
for 𝑀𝑓 in 𝜎 that sends her set of credentials in a single message

on the first step. For every attacker strategy 𝑆𝐴 , scheduler 𝛾 and

random tape 𝑣 , there exists a security parameter 𝜆suc such that for

all 𝜆 > 𝜆suc the user wins the execution (𝑀𝜆
𝑓
, 𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣).

Because 𝑆𝜆
𝑈
sends a message in the first step, there exists a se-

curity parameter 𝜆
𝑓

0
such that for all 𝜆 > 𝜆

𝑓

0
, the user’s message

eventually arrive before𝑇 (𝜆). It might be the case that an attacker’s

Marwa Mouallem and Ittay Eyal

message arrives first. If the mechanism does not receive any mes-

sages, it times out. This is possible only if 𝜆 < 𝜆
𝑓

0
, as the user

strategy we chose always send a message.

Let 𝜆 > 𝜆
𝑓

0
and consider a scheduler 𝛾 for which the user’s mes-

sage arrives first. Consider the execution 𝐸 = (𝑀𝜆
𝑓
, 𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣).

As the user’s message arrives first, with her set of credentials,𝑀𝑓

will extract the availability vector𝜎𝑈 of the credentials. Then, as𝑀𝑓

is successful in 𝜎 , it will return the identifier of the user. This can

happen only if 𝑓 (𝜎𝑈) = 1.

Now let 𝑆𝑈 be a winning user strategy and 𝑆𝐴 an attacker strat-

egy that sends any subset of the attacker’s credentials. Let 𝛾 ′ and 𝑣 ′

be a scheduler and random tape such that the attacker’s message

arrives first, and consider the execution 𝐸′ = (𝑀𝜆
𝑓
, 𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾

′, 𝑣 ′).
In that case, as the attacker sends a subset of her credentials,𝑀𝜆

𝑓

will extract the availability vector 𝜎′
𝐴
of the credentials. Then, as𝑀𝑓

is successful in 𝜎 , it will return the identifier of the user. This is

possible only if 𝑓 (𝜎′
𝐴
) = 0. This is true for any subset of creden-

tials the attacker chooses, including the set of all her credentials.

Thus, 𝑓 (𝜎𝐴) = 0. Therefore, we showed that if𝑀𝑓 is successful in

a scenario 𝜎 , then 𝑓 (𝜎𝑈) = 1 and 𝑓 (𝜎𝐴) = 0.

For the second direction, assume that 𝑓 (𝜎𝑈) = 1 and 𝑓 (𝜎𝐴) = 0.

Let 𝑆𝑈 be a user strategy family that sends the set of credentials

corresponding to 𝜎𝑈 in the first step. And let 𝑆𝐴 ,𝛾 and 𝑣 be any

attacker strategy, scheduler and random tape. We show that 𝑆𝑈 is

a winning user strategy for𝑀𝑓 in 𝜎 .

Consider the execution (𝑀𝜆
𝑓
, 𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾, 𝑣). If no message was

received, then𝑀𝜆
𝑓
times out. This is possible only if 𝜆 < 𝜆

𝑓

0
, as the

user strategy we chose sends a message on the first step. Other-

wise,𝑀𝜆
𝑓
receives a message.

If the user’s message arrives first to 𝑀𝜆
𝑓
with the credentials

corresponding to 𝜎𝑈 , then𝑀𝜆
𝑓
extracts the availability vector 𝜎𝑈 of

the credentials. Then, as 𝑓 (𝜎𝑈) = 1, the mechanism𝑀𝜆
𝑓
returns the

identifier of the user, thus the user wins the execution. Otherwise,

the attacker’s message msg𝐴 arrives first to𝑀𝜆
𝑓
. If msg𝐴 does not

contain a valid set of credentials, then𝑀𝜆
𝑓
returns the identifier of

the user, and she wins the execution. Otherwise,𝑀𝜆
𝑓
extracts the

availability vector 𝑞 ≤ 𝜎𝐴 of the credentials in msg𝐴 (the attacker

might send any subset of credentials she knows). Then, because 𝑓

is monotonic and 𝑓 (𝜎𝐴) = 0, also 𝑓 (𝑞) = 0 and 𝑀𝜆
𝑓
returns the

identifier of the user, thus the user wins the execution. In both

cases, if 𝜆 > 𝜆
𝑓

0
, the execution terminates and the user wins. And

if 𝜆 < 𝜆
𝑓

0
, either the user wins or the execution times out. Thus,𝑀𝑓

is successful in 𝜎 , concluding the proof that𝑀𝑓 is successful in a

scenario 𝜎 if and only if 𝑓 (𝜎𝑈) = 1 and 𝑓 (𝜎𝐴) = 0. □

E PARTIAL BOOLEAN MECHANISMS
Observation 2 (restated). Let 𝑀1 and 𝑀2 be two mechanisms
such that ∅ ≠ Π(𝑀1) ⊆ Π(𝑀2). Let 𝑇1 and 𝑇2 be the sets of all user
availability vectors and 𝐹1 and 𝐹2 be the sets of all attacker availability
vectors in Π(𝑀1) and Π(𝑀2) respectively. Then,𝑇1 ⊆ 𝑇2 and 𝐹1 ⊆ 𝐹2.

Proof. Let𝑀1,𝑀2,𝑇1,𝑇2, 𝐹1 and 𝐹2 be as in the claim. We show

that, 𝑇1 ⊆ 𝑇2 and 𝐹1 ⊆ 𝐹2. First, note that as Π(𝑀1) ≠ ∅, then 𝑇1
and 𝐹1 are both not empty. Because the profile of a mechanism

is the Cartesian product of the set of user availability vectors (𝑇1)

with the set of attacker availability vectors (𝐹1) (Observation 1).

Similarly, 𝑇2 and 𝐹2 are both not empty. Assume for contradiction

this at least one of the following holds: 𝑇1 ⊈ 𝑇2 or 𝐹1 ⊈ 𝐹2.

Without loss of generality, assume that 𝑇1 ⊈ 𝑇2. As Π(𝑀1) ≠ ∅,
there exists 𝑞 ∈ 𝑇1 such that 𝑞 ∉ 𝑇2. Consider a scenario 𝜎 such

that 𝜎𝑈 = 𝑞 and 𝜎𝐴 ∈ 𝐹1. Then, 𝜎 ∈ Π(𝑀1) and 𝜎 ∉ Π(𝑀2),
contradicting the fact Π(𝑀1) ⊆ Π(𝑀2). Thus, 𝑇1 ⊆ 𝑇2. Simi-

larly, 𝐹1 ⊆ 𝐹2. □

Lemma 5 (restated). For all mechanisms, there exists an equivalent
monotonic partial Boolean mechanism.

Proof. Let𝑀 be amechanismwith𝑛 credentials. If𝑀 ’s profile is

empty, then𝑀 is equivalent to the Boolean mechanism of constant

Boolean function 𝑓 (𝑥) = 0. A constant function is monotonic, and

thus we are done.

Otherwise, by Theorem 1, there exists a monotonic Boolean

function 𝑓 such that the Boolean mechanism 𝑀𝑓 dominates 𝑀 .

That is, Π(𝑀) ⊆ Π(𝑀𝑓). Let 𝑇 be the set of all user availability

vectors in Π(𝑀) and 𝐹 be the set of all attacker availability vectors

in Π(𝑀).
By definition, To prove that (𝑇, 𝐹) is a partial Boolean function,

we must show that 𝑇 ∩ 𝐹 = ∅. Let 𝑇𝑓 and 𝐹𝑓 be the sets of all

user and attacker availability vectors in Π(𝑀𝑓) respectively. As𝑀
and𝑀𝑓 ’s profiles are not empty, by Observation 2, we get that 𝑇 ⊆
𝑇𝑓 and 𝐹 ⊆ 𝐹𝑓 .

We show that 𝑇 ∩ 𝐹 = ∅. If there exists a vector

𝑞 ∈ 𝑇 ∩ 𝐹 ⊆ 𝑇𝑓 ∩ 𝐹𝑓 , then for 𝑞, it holds that 𝑓 (𝑞) = 1 and 𝑓 (𝑞) = 0,

contradicting the fact that 𝑓 is a well-defined function. Thus,𝑇∩𝐹 =

∅ and (𝑇, 𝐹) is a partial Boolean function. It is monotonic because 𝑓

is an extension of (𝑇, 𝐹) and 𝑓 is monotonic. And the mecha-

nism𝑀 is equivalent to the monotonic partial Boolean mechanism

of (𝑇, 𝐹). □

F PROFILE SIZE BOUNDS
We calculate the number of viable scenarios.

Observation 3 (restated). The number of viable scenarios for 𝑛
credentials is 4𝑛 − 3𝑛 .

Proof. The number of scenarios for 𝑛 credentials is 4
𝑛
. The

number of viable scenarios is the number of scenarios in which

there exists at least one safe credential. The number of scenarios in

which there are no safe credentials is the number of scenarios in

which all credentials are either lost, leaked, or stolen. That is, 3
𝑛

scenarios. Therefore, the number of viable scenarios is 4
𝑛 − 3𝑛 . □

We prove an upper bound on the numbe of scenarios that can

be added to a profile of a partial Boolean function.

Observation 4 (restated). Let (𝑇, 𝐹) be a partial Boolean function
of 𝑛 credentials. Let 𝑠 = 𝑚𝑎𝑥 (|𝑇 |, |𝐹 |). The maximum number of
scenarios that can be added to the profile of the mechanism𝑀(𝑇,𝐹)
without contradicting it is 𝑠 · (2𝑛 − 𝑠) − |Π(𝑀(𝑇,𝐹)) | if 𝑠 ≥ 2

𝑛−1

and 4𝑛 − 3𝑛 − |Π(𝑀(𝑇,𝐹)) | otherwise.

Asynchronous Authentication

Proof. Let (𝑇, 𝐹) be a partial Boolean function of 𝑛 credentials

and let 𝑠 =𝑚𝑎𝑥 (|𝑇 |, |𝐹 |). For 𝑛 credentials, the number of Boolean

vectors is 2
𝑛
. By Observation 1, we have |Π(𝑀(𝑇,𝐹)) | = |𝑇 | · |𝐹 |.

There are three separate cases:

(1) If 𝑠 ≥ 2
𝑛−1

and 𝑠 = |𝑇 | then the maximal size of a pro-

file is reachable if all vectors 𝑣 ∉ 𝑇 ∪ 𝐹 are added to 𝐹 . That

is, the number of scenarios that can be added to the profile is at

most |𝑇 | · (2𝑛 − |𝑇 |) − |Π(𝑀(𝑇,𝐹)) |
(2) If 𝑠 ≥ 2

𝑛−1
and 𝑠 = |𝐹 | the case is symmetric to the previous

one and the number of scenarios that can be added to the profile is

at most |𝐹 | · (2𝑛 − |𝐹 |) − Π(𝑀(𝑇,𝐹))
(3) Otherwise, we get that 𝑠 < 2

𝑛−1
, then the maximal size of

a profile is 4
𝑛 − 3

𝑛
, the same as the number of viable scenarios

(Observation 3) as by [35], non-viable scenarios are not in the

profile. In this case, the number of scenarios that can be added to

the profile is at most 4
𝑛 − 3𝑛 − |Π(𝑀(𝑇,𝐹)) |. □

G ALGORITHM ANALYSIS
G.1 Algorithm Correctness
We first prove that our algorithm keeps the (possibly partial) truth

table monotonic after each update.

Claim 1. After each update, the partial monotonic truth table
remains a (possibly partial) monotonic truth table, and the above
update does not contradict previous ones.

Proof. Given a monotonic partial truth table, it holds that

for all 𝑥,𝑦 ∈ {0, 1}𝑛 such that 𝑥 > 𝑦 we have that if 𝑓 (𝑦) = 1

then 𝑓 (𝑥) = 1, and if 𝑓 (𝑥) = 0 then 𝑓 (𝑦) = 0. According to the

algorithm, in every step where we add a viable scenario 𝜎 , we check

that 𝜎𝑈 is not set to 0 and 𝜎𝐴 is not set to 1. If so, we set 𝜎𝑈 to 1

and 𝜎𝐴 to 0. As 𝜎 is viable, we have that 𝜎𝑈 ≰ 𝜎𝐴 , so this update

preserves monotonicity.

Because 𝜎𝑈 was not set to 0 before, for all 𝑥 > 𝜎𝑈 we have

that 𝑓 (𝑥) ≠ 0, and we can set them to 1. Similarly, because 𝜎𝐴
was not set to 1 before, for all 𝑦 < 𝜎𝐴 , 𝑓 (𝑦) ≠ 1, and we can set

them to 0. Therefore, the truth table can still be completed into a

monotonic Boolean function. □

We now prove our algorithm correctness, including termination,

the truth table validity, and bound the distance of the returned

mechanism from the optimal one.

Lemma 9. Let 𝑛 be the number of credentials and let 0 ≤ 𝛿 < 1.
Then when Algorithm 2 returns, the variable maxTable contains a
truth table of a mechanism that is at least 𝛿 close to the optimal
mechanism.

Proof. We divide the proof into three parts. First, we show

that the algorithm always stops. Second, we show that when the

algorithm returns, maxTable contains a valid complete monotonic

truth table. Finally, we show that the mechanism defined by the

truth table is at least 𝛿 close to the optimal mechanism.

To show that the algorithm always stops, we note that the num-

ber of scenarios that can be added to a profile of a partial Boolean

mechanism is bounded. Thus, in the worst case, the algorithm ex-

plores all possible scenarios, which is a finite number. Once no

scenarios are left, the condition in line 11 is met, and the algorithm

stops.

To show that the algorithm always results in a valid complete

monotonic truth table, we note that by Claim 1, the truth table

remains a (possibly partial) monotonic truth table after each update.

Thus, it is sufficient to show that the algorithm updates maxTable
to a valid complete monotonic truth table at least once, and never

updates it to a non-complete truth table.

The algorithm stops the recursive exploration only when one of

the three stopping conditions is met. In the first case (line 3), the

truth table is complete, and the algorithm updates maxTable to this
complete table. In the second case (line 11), the algorithm completes

the truth table arbitrarily, and maxTable gets the completed table.

Finally, in the third case (line 18), the algorithm prunes the branch,

and returns, without updating maxTable. Thus, if the algorithm

updates maxTable, it always updates it to a complete valid truth

table.

To show that the algorithm updates maxTable at least once, we
note that the third stopping condition (line 18) is the only one

that does not update maxTable. However, this condition is met

only if maxSuccessProb is greater than 0. And as maxSuccessProb is
initialized to 0, andmaxTable andmaxSuccessProb are updated only
together (lines 5-6 and 14-15), the algorithm must return at least

once because one of the first two stopping conditions is met. Thus,

maxTable is updated to a valid complete monotonic truth table.

To complete the proof, we show that the mechanism defined

by the truth table’s success probability is at most 𝛿 lower than

the optimal mechanism. Denote by𝑀 the mechanism defined by

the truth table maxTable after the algorithm returns, with success

probability maxSuccessProb, and by 𝑀∗ the optimal mechanism.

Assume for contradiction that the probability maxSuccessProb +
𝛿 is smaller than the success probability of 𝑀∗. By Theorem 1,

the optimal mechanism 𝑀∗ can be represented by a (complete)

monotonic Boolean function. Therefore, there exists a path along

the recursive exploration tree that leads to the optimal mechanism,

which the algorithm pruned (in line 19).

Consider the function call in which the algorithm pruned the

path to the optimal mechanism. From Observation 4, we know

that numPossibleAdditions (line 9) is an upper bound on the num-

ber of scenarios that can be added to the current truth table with-

out contradicting it. As potentialSuccessProb is calculated by sum-

ming the probabilities of the current partial truth table and the

next numPossibleAdditions scenarios with the highest probabilities,

then in this branch, potentialSuccessProb ≥ 𝑀∗’s success proba-
bility. However, as the algorithm pruned this branch, we know

thatmaxSuccessProb > potentialSuccessProb−𝛿 (line 18). Therefore,

maxSuccessProb + 𝛿 > 𝑀∗’s success probability. Contradicting the
assumption that maxSuccessProb + 𝛿 is smaller than the success

probability of𝑀∗. Therefore, the algorithm returns a mechanism

that is at most 𝛿 away from the optimal mechanism.

Overall, we showed that the algorithm returns a valid complete

monotonic truth table representing a mechanism whose success

probability is at most 𝛿 lower than the optimal mechanism. □

Marwa Mouallem and Ittay Eyal

G.2 Algorithm Complexity
We first discuss the difficulty of calculating the exact complexity

of the algorithm in a general case (§5.5.1). Then we evaluate the

complexity of the algorithm empirically (§5.5.2), by measuring the

runtime of our algorithm for different numbers of credentials and

fault probabilities.

G.2.1 Bound. To give a loose upper bound on a single function

call of the algorithm’s complexity, we analyze the complexity of

each step separately. First, to calculate the current profile (line 1),

we use a Cartesian product of the availability vectors of the user

and the attacker as described in Observation 1. By [35] and Obser-

vation 3, this is bounded by 𝑂 (4𝑛 − 3𝑛). Calculating the success

probability of the current truth table (line 2) requires summing the

probabilities of the scenarios in the profile (𝑂 (4𝑛 − 3𝑛)). Finding
and sorting the possible additional scenarios probabilities (line 8)

is𝑂 ((4𝑛 − 3𝑛) ·𝑛). Finding the number of possible additions (line 9)

is calculated based on Observation 4 and requires 𝑂 (1). The bound
itself is 𝑂 (4𝑛 − 3

𝑛) in the worst case, if we could add all of the

viable scenarios. Therefore, calculating the sum of the probabilities

of the next numPossibleAdditions scenarios (line 10) is 𝑂 (4𝑛 − 3𝑛).
Excluding the function calls, all other steps are 𝑂 (1). Thus, the
complexity of a single recursive function call is 𝑂 ((4𝑛 − 3𝑛) · 𝑛).
And in the worst case, the recursion depth may reach 𝑂 (24𝑛−3𝑛).
Resulting in a total complexity of 𝑂 (24𝑛−3𝑛 · (4𝑛 − 3𝑛) · 𝑛).

But this analysis assumes the worst case for every step of the

algorithm. However, in practice, many steps’ worst case cannot hap-

pen simultaneously. Thus, the actual complexity of the algorithm

is much lower than the calculated upper bound.

Calculating the exact complexity of the algorithm depends on

the number of credentials, their specific probabilities, and the pa-

rameter 𝛿 . While an upper bound on the recursion depth is given

by 2 to the power of the number of viable scenarios, the actual

depth explored is much smaller. This is due to multiple factors, for

example (1) the exponential drop in the probability of different sce-

narios, combined with the fact that the algorithm prunes branches

with negligible advantage; (2) the fact that the number of scenarios

that can be added to a profile of a partial Boolean mechanism is

limited (Observation 4) in a non-trivial way depending on which do

result in a monotonic mechanism; and (3) each scenario adds not a

single row to the truth table, but possibly many rows for keeping

monotonicity (depending on the specific scenario and the current

truth table). While all those factors contribute to the algorithm’s

efficiency, it remains an open question whether the algorithm’s

exact complexity can be calculated theoretically (cf. the lack of

a closed form expression for the number of monotinic Boolean

functions [15]).

G.2.2 Empirical Complexity. We provide additional examples of

our algorithm runtime behavior in Table 1 and Figure 6.

Now we describe each plot in Figure 6 and the corresponding

fitted functions in Table 1, categorized by the runtime function

behavior.

Exponential Growth: When one credential can suffer from up

to a single type of fault and the rest can have up to two types of

faults, or when all credentials can suffer from all types of faults

with low probability, the algorithm’s runtime grows exponentially

Figure 6: Runtime of the algorithm as a function of the
number of credentials for different fault probabilities with
𝛿 = 10

−5.

(𝑂 (4𝑛)) with the number of credentials (all fits with𝑅2 > 0.97, exact

values are in Table 1).

For example, when all credentials can suffer from loss

with 𝑃 loss = 0.01, 𝑃 leak = 𝑃 theft = 0 (only loss in Figure 6), or all

credentials can suffer from theft with 𝑃 theft = 0.01, 𝑃 loss = 𝑃 leak = 0

(only theft in Figure 6).

When one key is prune to loss and leak with 𝑃 loss = 𝑃 leak =

0.01, 𝑃 theft = 0 and the rest can only be stolen with 𝑃 theft = 0.01

(hetro in Figure 6). Or when one credential can be easily lost, but not
leaked or stolen, with 𝑃 loss

1
= 0.3, 𝑃 leak

1
= 𝑃

theft
1

= 0 and the rest can

be either lost or leaked with 𝑗 > 1, 𝑃 loss
𝑗

= 𝑃 leak
𝑗

= 0.01, 𝑃
theft
𝑗

= 0.

(1 easily-to-lose in Figure 6). Similarly, when 2 credentials can be

easily lost, but not leaked or stolen (2 easily-to-lose in Figure 6).

We observe a similar trend when each credential can have all

three types of faults, where at least two with low fault probabilities,

𝑃 loss = 0.01, 𝑃 leak = 𝑃 theft = 0.001 (loss, leak, theft in Figure 6),

or when one credential can be only lost with 𝑃 loss
1

= 0.01, 𝑃 leak
1

=

𝑃
theft
1

= 0 and the rest can have all three types of faults with 𝑖 >

1, 𝑃 loss
𝑖

= 0.01, 𝑃 leak
𝑖

= 𝑃
theft
𝑖

= 0.001 (all loss, leak, theft in Figure 6).

Super-Exponential Growth:When all credentials can suffer

from two or more types of faults with a high probability, the al-

gorithm’s runtime grows super-exponentially with the number

of credentials. E.g., if all three fault types are possible with high

probabilities, say 𝑃 loss = 0.1, 𝑃 leak = 0.3, 𝑃 theft = 0.4 (high faults in
Figure 6). Or when all credentials are pruned to two or more types

of faults with high probabilities (e.g., 𝑃 loss = 𝑃 leak = 0.01, 𝑃 theft = 0)

(high loss leak in Figure 6), the algorithm’s runtime grows too

rapidly to obtain sufficient data points for regression analysis.

Asynchronous Authentication

Table 1: Runtime Analysis

Name Loss Leak Theft Formula 𝑅2

only loss 10
−2

0 0 0.0014 · 4𝑛 − 12.01 0.979

only theft 0 0 10
−2

0.0007 · 4𝑛 − 6.20 0.979

hetro 𝑃1 = 10
−2
, 𝑖 > 1 : 𝑃𝑖 = 0 𝑃1 = 10

−2
, 𝑖 > 1, 𝑃𝑖 = 0 𝑃1 = 0, 𝑖 > 1, 𝑃𝑖 = 10

−2
0.001 · 4𝑛 − 8.68 0.979

1easy-to-lose 𝑃1, 𝑖 > 1 : 𝑃𝑖 = 10
−2 𝑃1 = 0, 𝑖 > 1, 𝑃𝑖 = 10

−2
0 0.0059 · 4𝑛 + −53.54 0.967

2easy-to-lose 𝑃1 = 𝑃2 = 0.3, 𝑖 > 2 : 𝑃𝑖 = 10
−2 𝑃1 = 𝑃2 = 0, 𝑖 > 2, 𝑃𝑖 = 10

−2
0 0.0056 · 4𝑛 − 42.99 0.968

loss, all-leak 𝑃1 = 0, 𝑖 > 1 : 𝑃𝑖 = 10
−2

10
−2

0 0.0004 · 4𝑛 − 0.41 0.977

loss, leak, theft 10
−2

10
−3

10
−3

0.006 · 4𝑛 − 55.44 0.97

all loss, leak, theft 10
−2 𝑃1 = 0, 𝑖 > 1, 𝑃𝑖 = 10

−3 𝑃1 = 0, 𝑖 > 1, 𝑃𝑖 = 10
−3

0.0019 · 4𝑛 − 4.69 0.97

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Asynchronous Authentication
	3.2 Mechanism Success

	4 Maximal Mechanisms
	4.1 Domination by Boolean Mechanisms
	4.2 Monotonic Boolean Mechanisms are Maximal

	5 Probabilistic Analysis
	5.1 Preliminaries
	5.2 Profiles and Scenarios
	5.3 Scenario-Based Search Algorithm
	5.4 Algorithm Correctness
	5.5 Algorithm Complexity
	5.6 Case Studies

	6 Conclusion
	References
	A Security Parameters and Mechanisms Families
	A.1 Mechanisms With Security Parameters
	A.2 Execution
	A.3 Denial of Service attacks
	A.4 Mechanism Success

	B One-Shot Mechanisms Dominance - Full Proof
	C Deterministic Mechanisms are Dominated by Boolean Mechanisms
	D Success Equivalence
	E Partial Boolean Mechanisms
	F Profile Size Bounds
	G Algorithm Analysis
	G.1 Algorithm Correctness
	G.2 Algorithm Complexity

